Abstract
In the last decade, consumer graphics cards have increased their power because of the computer games industry. These cards are now programmable and capable of processing huge amounts of data in a SIMD fashion. In this work, we propose an alternative implementation of a very intuitive and well known 2D template matching, where the most computationally expensive task is accomplished by the graphics hardware processor. This computation approach is not new, but in this work we resume the method step-by-step to better understand the underlying complexity. Experimental results show an extraordinary performance trade-off, even working with obsolete hardware.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, Computer Science Series (1995)
Baxes, G.A.: Digital Image Processing, Principles and Applications. John Wiley & Sons, Inc., Chichester (1994)
Thompson, C.J., Hahn, S., Oskin, M.: Using Modern Graphics Architectures for General-Purpose Computing: A Framework and Analysis. In: Int. Symposium on Microarchitecture, MICRO (2002)
Goodnight, N., Wang, R., Woolley, C., Humphreys, G.: Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware. In: Eurographics Symposium on Rendering, pp. 1–13 (2003)
Purcell, T.: Ray Tracing on a Stream Processor, Ph. D Thesis, Univ. of Stanford (2004)
Harris, M.J.: Real-Time Cloud Simulation and Rendering, Ph. D Thesis, Univ. of North Carolina at Chapel Hill (2003)
Olano, M.: A Programmable Pipeline for Graphics Hardware. Ph.D. thesis, University of North Carolina at Chapel Hill (1998)
Venkatasubramanian, S.: The Graphics Card as a StreamComputer. In: Workshop on Management and Processing of Data Streams, San Diego, California, USA (2003)
McCool, M., Du Toit, S., Popa, T., Chan, B., Moule, K.: Shader Algebra. ACM Transactions on Graphics (2004)
Larsen, E.S., McAllister, D.: Fast Matrix Multiplies using Graphics Hardware. In: Proc. Supercomputing (2001)
Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers of the GPU: Conjugate gradients and multigrid. ACM Trans. on Graphics, 917–924 (2003)
Kruger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. on Graphics, 908–916 (2003)
Yang, R., Welch, G.: Fast Image Segmentation and Smoothing Using Commodity Graphics Hardware. Journal of Graphics Tools 7(4), 91–100 (2002)
Colantoni, P., Boukala, N., da Rugna, J.: Fast and Accurate Color Image Processing Using 3D Graphics Cards. In: Proc. of 8th Int. Workshop on Vision, Modeling and Visualization, Germany (2003)
Krueger, J., Westermann, R.: Acceleration Techniques for GPU-based Volume Rendering. In: Proc. IEEE Visualization (2003)
Bohn, C.A.: Kohonen Feature Mapping Through Graphics Hardware. In: Proc. of 3rd Int. Conference on Computational Intelligence and Neurosciences (1998)
Oh, K.-S., Jung, K.: GPU implementation of neural networks. Pattern Recognition 37, 1311–1314 (2004)
Govindaraju, N.K., Lloyd, B., Wang, W., Lin, M.C., Manocha, D.: Fast Computation of Database Operations using Graphics Processors. In: Proc. SIGMOD 2004, Paris, France (2004)
GPGPU Website, http://www.gpgpu.org
Rost, R.J.: OpenGL Shading Language. Pearson Education (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cabido, R., Montemayor, A.S., Sánchez, Á. (2005). Hardware-Accelerated Template Matching. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492429_83
Download citation
DOI: https://doi.org/10.1007/11492429_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26153-7
Online ISBN: 978-3-540-32237-5
eBook Packages: Computer ScienceComputer Science (R0)