Multi-resolution Image Analysis for Vehicle Detection | SpringerLink
Skip to main content

Multi-resolution Image Analysis for Vehicle Detection

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3522))

Included in the following conference series:

Abstract

Computer Vision can provide a great deal of assistance to Intelligent Vehicles. In this paper an Advanced Driver Assistance Systems for Vehicle Detection is presented. A geometric model of the vehicle is defined where its energy function includes information of the shape and symmetry of the vehicle and the shadow it produces. A genetic algorithm finds the optimum parameter values. As the algorithm receives information from a road detection module some geometric restrictions can be applied. A multi-resolution approach is used to speed up the algorithm and work in realtime. Examples of real images are shown to validate the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dickmanns, E.D.: The development of machine vision for road vehicles in the last decade. In: IEEE Intelligent Vehicles Symposium, pp. 268–281 (2002)

    Google Scholar 

  2. Charkari, N.M., Mori, H.: Visual vehicle detection and tracking based on the sign pattern. Advanced Robotics 9, 367–382 (1995)

    Article  Google Scholar 

  3. Hoffmann, C., Dang, T., Stiller, C.: Vehicle detection fusing 2D visual features. In: IEEE Intelligent Vehicles Symposium, pp. 280–285 (2004)

    Google Scholar 

  4. Zielke, T., Brauckmann, M., Von Seelen, W.: Intensity and edge-based symmetry detection with application to car-following. CVGIP: Image Understanding 58, 177–190 (1993)

    Article  Google Scholar 

  5. Goerick, C., Noll, D., Werner, M.: Artificial Neural Networks in Real Time Car detection and Tracking Applications. Pattern recognition Letters 17, 335–343 (1996)

    Article  Google Scholar 

  6. Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Goerick, C., von Seelen, W.: An image processing system for driver assistance. Image and Vision Computing 18, 367–376 (2000)

    Article  Google Scholar 

  7. ten Kate, T.K., van Leewen, M.B., Moro-Ellenberger, S.E., Driessen, B.J.F., Versluis, A.H.G., Groen, F.C.A.: Mid-range and Distant Vehicle Detection with a Mobile Camera. In: IEEE Intelligent Vehicles Symposium, pp. 72–77 (2004)

    Google Scholar 

  8. Matthews, N.D., An, P.E., Roberts, J.M., Harris, C.J.: A neurofuzzy approach to future intelligent driver support systems. Proceedings-of the Institution of Mechanical Engineers Part D (Journal of Automobile Engineering) 212, 43–58 (1998)

    Article  Google Scholar 

  9. Broggi, A., Cerri, P., Antonello, P.C.: Multi-Resolution Vehicle Detection using Artificial Vision. In: IEEE Intelligent Vehicles Symposium, pp. 310–314 (2004)

    Google Scholar 

  10. Sotelo, M.A., Fernandez, D., Naranjo, J.E., González, C., García, R., de Pedro, T., Reviejo, J.: Vision-based Adaptive Cruise Control for Intelligent Road Vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 64–69 (2004)

    Google Scholar 

  11. Betke, M., Haritaoglu, E., Davis, L.S.: Real-time multiple vehicle detection and tracking from a moving vehicle. Machine Vision and Applications 12, 69–83 (2000)

    Article  Google Scholar 

  12. Ferryman, J., Maybank, S.J., Worrall, A.D.: Visual surveillance for moving vehicles. International Journal of Computer-Vision 37, 187–197 (2000)

    Article  MATH  Google Scholar 

  13. Kato, T., Ninomiya, Y., Masaki, I.: Preceding vehicle recognition based on learning from sample images. IEEE Transactions on Intelligent Transportation Systems 3, 252–260 (2002)

    Article  Google Scholar 

  14. Dubuisson, M.-P., Lakshmanan, S., Jain, A.K.: Vehicle segmentation and classification using deformable templates. IEEE Transactions on Pattern analysis and Machine Intelligence 18, 293–308 (1998)

    Article  Google Scholar 

  15. Collado, J.M., Hilario, C., de la Escalera, A., Armingol, J.M.: Model Based Vehicle Detection for Intelligent Vehicles. In: IEEE Intelligent Vehicles Symposium, pp. 572–577 (2004)

    Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hilario, C., Collado, J.M., Armingol, J.M., de la Escalera, A. (2005). Multi-resolution Image Analysis for Vehicle Detection. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492429_70

Download citation

  • DOI: https://doi.org/10.1007/11492429_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26153-7

  • Online ISBN: 978-3-540-32237-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics