Human Figure Segmentation Using Independent Component Analysis | SpringerLink
Skip to main content

Human Figure Segmentation Using Independent Component Analysis

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3522))

Included in the following conference series:

Abstract

In this paper, we present a Statistical Shape Model for Human Figure Segmentation in gait sequences. Point Distribution Models (PDM) generally use Principal Component analysis (PCA) to describe the main directions of variation in the training set. However, PCA assumes a number of restrictions on the data that do not always hold. In this work, we explore the potential of Independent Component Analysis (ICA) as an alternative shape decomposition to the PDM-based Human Figure Segmentation. The shape model obtained enables accurate estimation of human figures despite segmentation errors in the input silhouettes and has really good convergence qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumberg, A., Hogg, D.: Learning deformable models for tracking the human body. In: Shah, M., Jain, R. (eds.) Motion-Based Recognition, vol. 3, pp. 39–60. Kluwer, Dordrecht (1997)

    Google Scholar 

  2. Blake, A., Isard, M.: Active Contours. Springer, Heidelberg (1998)

    Google Scholar 

  3. Orrite-Uruñuela, C., Martínez del Rincón, J., Herrero Jaraba, J.E., Rogez, G.: 2D Silhouette and 3D Skeletal Models for Human Detection and Tracking. ICPR (4), 244–247 (2004)

    Google Scholar 

  4. The CMU Motion of Body (MoBo) Database, http://www.hid.ri.cmu.edu

  5. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, Hoboken (2001)

    Book  Google Scholar 

  6. Üzümcü, M., Frangi, A.F., Reiber, J.H., Lelieveldt, B.P.: Independent Component Analysis in Statistical Shape Models. In: Sonka, M., Fitzpatrick, J.M. (eds.) Proc. of SPIE, vol. 5032, pp. 375–383 (2003)

    Google Scholar 

  7. Himberg, J., Hyvärinen, A., Esposito, F.: Validating the independent components of neuroimaging time-series via clustering and visualization. Neuroimage 22(3), 1214–1222 (2004)

    Article  Google Scholar 

  8. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. IEEE Trans. on Neural Networks 13, 1450–1464 (2002)

    Article  Google Scholar 

  9. Hyvärinen, A., Oja, E.: A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Computation 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  10. Everitt, B.: Cluster Analysis, 3rd edn. Edward Arnold, London (1993)

    Google Scholar 

  11. Peltonen, J., Kaski, S.: Discriminative Components of Data. IEEE Transactions on Neural Networks (accepted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rogez, G., Orrite-Uruñuela, C., Martínez-del-Rincón, J. (2005). Human Figure Segmentation Using Independent Component Analysis. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492429_37

Download citation

  • DOI: https://doi.org/10.1007/11492429_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26153-7

  • Online ISBN: 978-3-540-32237-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics