Abstract
This paper proposes a new algorithm, called TAM WAP(the shorthand forTop down Algorithm for Mining Web AccessPatterns), to mine interesting WAP from Web logs. TAM WAP searches the P tree database in the top down manner to mine WAP. By selectively building intermediate data according to the features of current area to be mined, it can avoid stubbornly building intermediate data for each step of mining process. The experiments for both real data and artificial data show that our algorithm outperforms conventional methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. SIGKDD Explorations 1(2), 12–23 (2000)
Pei, J., Han, J.W., Mortazavi-asl, B., Zhu, H.: Mining Access Patterns Efficiently from Web Logs. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 396–407. Springer, Heidelberg (2000)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. 1995 Int. Conf. Data Engineering (ICDE 1995), Taipei, Taiwan, March 1995, pp. 3–14 (1995)
Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Proc. 5th Int. Conf. Extending Database Technology (EDBT 1996), Avignon, France, March 1996, pp. 3–17 (1996)
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, April 2-6, pp. 215–224 (2001)
Lu, Y., Ezeife, C.I.: Position Coded Pre-order Linked WAP-tree for Web Log Sequential Pattern Mining. In: Proceedings of the 7th Pacific-Asia Conference, PAKDD 2003, Seoul, Korea, April 30 - May 2, pp. 337–349 (2003)
Madria, S.K., Bhowmick, S.S., Ng, W.K., Lim, E.P.: Research Issues in Web Data Mining. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 303–312. Springer, Heidelberg (1999)
Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide Web Browsing Patterns. Knowledge and Information Systems 1(1), 5–32 (1999)
Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algorithms. In: KDD 2001, pp. 401–406 (2001)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: SIGMOD 2000, Dallas, Tx, May 2000, pp. 1–12 (2000)
Xu, Y., Yu, J.X., Liu, G., Lu, H.: From Path Tree To Frequent Patterns: A Framework for Mining Frequent Patterns. In: ICDM 2002, pp. 514–521 (2002)
Wang, K., Tang, L., Han, J., Liu, J.: Top Down FP-Growth for Association Rule Mining. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 334–340. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jian-Kui, G. et al. (2005). A Top Down Algorithm for Mining Web Access Patterns from Web Logs. In: Ho, T.B., Cheung, D., Liu, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2005. Lecture Notes in Computer Science(), vol 3518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11430919_99
Download citation
DOI: https://doi.org/10.1007/11430919_99
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26076-9
Online ISBN: 978-3-540-31935-1
eBook Packages: Computer ScienceComputer Science (R0)