Abstract
This paper presents a constructive method for deriving an updated discriminant eigenspace for classification, when bursts of new classes of data is being added to an initial discriminant eigenspace in the form of random chunks. The proposed Chunk incremental linear discriminant analysis (I-LDA) can effectively evolve a discriminant eigenspace over a fast and large data stream, and extract features with superior discriminability in classification, when compared with other methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gall, P., Martin, R.: Incremental Eigenanalysis for Classification. In: Proc. British Machine Vision Conference, vol. 1, pp. 286–295.
Hall, P., Marshall, D., Martin, R.: Merging and Splitting Eigenspace Models. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 1042–1049 (2000)
Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 228–233 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pang, S., Ozawa, S., Kasabov, N. (2005). Chunk Incremental LDA Computing on Data Streams. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427445_9
Download citation
DOI: https://doi.org/10.1007/11427445_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25913-8
Online ISBN: 978-3-540-32067-8
eBook Packages: Computer ScienceComputer Science (R0)