Abstract
Humanoid robotics hardware and control techniques have advanced rapidly during the last five years. Presently, several companies have announced the commercial availability of various humanoid robot prototypes. In order to improve the autonomy and overall functionality of these robots, reliable sensors, safety mechanisms, and general integrated software tools and techniques are needed. We believe that the development of practical motion planning algorithms and obstacle avoidance software for humanoid robots represents an important enabling technology. This paper gives an overview of some of our recent efforts to develop motion planning methods for humanoid robots for application tasks involving navigation, object grasping and manipulation, footstep placement, and dynamically-stable full-body motions. We show experimental results obtained by implementations running within a simulation environment as well as on actual humanoid robot hardware.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H. (2005). Motion Planning for Humanoid Robots. In: Dario, P., Chatila, R. (eds) Robotics Research. The Eleventh International Symposium. Springer Tracts in Advanced Robotics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11008941_39
Download citation
DOI: https://doi.org/10.1007/11008941_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23214-8
Online ISBN: 978-3-540-31508-7
eBook Packages: EngineeringEngineering (R0)