Nested Concept Graphs and Triadic Power Context Families | SpringerLink
Skip to main content

Nested Concept Graphs and Triadic Power Context Families

  • Conference paper
Conceptual Structures: Logical, Linguistic, and Computational Issues (ICCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1867))

Included in the following conference series:

Abstract

In this paper, a contextual semantics for nested concept graphs shall be presented, that has especially two aims: We will propose a situation-based semantics that fits with Sowa’s understanding of contexts and draw the connection to formal concept analysis by founding on formal contexts, more precisely triadic power context families. Its basic idea is to understand interpreted nested concept graphs as situation-based judgements in triadic power context families. With it, the logical th eory can be well developed and inferences can be characterized in three ways: By semantical entailment, by means of a standard model and by a sound and complete calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983)

    Google Scholar 

  2. Chein, M., Mugnier, M.-L.: Positive Nested Conceptual Graphs. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 95–109. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Chein, M., Mugnier, M.-L., Simonet, G.: Nested Graphs: A Graph-based Knowledge Representation Model with FOL Semantics, Rapport de Recherche, LIRMM, Université Montpellier II (1998)

    Google Scholar 

  4. Devlin, K.: Logic and Information. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  5. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., et al. ((Hrsg.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)

    Google Scholar 

  6. McCarthy, J.: Notes on Formalizing Context. In: Proceedings of the IJCAI, pp. 555–560 (1993)

    Google Scholar 

  7. Mugnier, M.-L., Chein, M.: Représenter des Connaissances et Raisonner avec des Graphes, Revue d’Intelligence Artificielle 10, 7–56 (1996)

    Google Scholar 

  8. Preller, A., Mugnier, M.-L., Chein, M.: A Logic for Nested Graphs, Research Report 95038, LIRMM, Université Montpellier II (1995)

    Google Scholar 

  9. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur Restrukturierung der mathematischen Logik, Dissertation, FB Mathematik, TU Darmstadt. Shaker Verlag, Aachen (1998)

    Google Scholar 

  10. Prediger, S.: Simple Concept Graphs: A Logic Approach. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453. Springer, Heidelberg (1998)

    Google Scholar 

  11. Prediger, S., Wille, R.: The Lattice of Concept Graphs of a Relationally Scaled Context. In: Tepfenhart, W., Cyre, W. (eds.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 401–414. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Simonet, G.: Une sémantique logique pour les graphes emboités, Research Report 96047, LIRMM, Université Montpellier II (1996)

    Google Scholar 

  13. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)

    Google Scholar 

  14. Sowa, J.F.: Peircean Foundation for a Theory of Context. In: Lukose, D., et al. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 41–64. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Wille, R.: The Basic Theorem of Triadic Concept Analysis. Order 12, 149–158 (1995)

    Google Scholar 

  16. Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS(LNAI), vol. 1257, pp. 290–303. Springer, Heidelberg (1997)

    Google Scholar 

  17. Wille, R.: Triadic Concept Graphs. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 198–208. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prediger, S. (2000). Nested Concept Graphs and Triadic Power Context Families. In: Ganter, B., Mineau, G.W. (eds) Conceptual Structures: Logical, Linguistic, and Computational Issues. ICCS 2000. Lecture Notes in Computer Science(), vol 1867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722280_17

Download citation

  • DOI: https://doi.org/10.1007/10722280_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67859-5

  • Online ISBN: 978-3-540-44663-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics