Abstract
mspass is an extension of the first-order theorem prover spass, which can be used as a modal logic theorem prover, a theorem prover for description logics and a theorem prover for the relational calculus.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auffray, Y., Enjalbert, P.: Modal theorem proving: An equational viewpoint. J. Logic Computat. 2(3), 247–297 (1992)
Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Logic Computat. 4(3), 217–247 (1994)
De Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal logics. Logic J. IGPL (2000) (to appear)
Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proc. LICS 1999, pp. 295–303. IEEE Computer Soc, Los Alamitos (1999)
Herzig, A.: Raisonnement automatique en logique modale et algorithmes d’unification. PhD thesis, Univ. Paul-Sabatier, Toulouse (1989)
Hustadt, U.: Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD thesis, Univ. d. Saarlandes, Saarbrücken, Germany (1999)
Hustadt, U., Schmidt, R.A.: An empirical analysis of modal theorem provers. J. Appl. Non-Classical Logics 9(4), 479–522 (1999)
Hustadt, U., Schmidt, R.A.: Maslov’s class K revisited. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 172–186. Springer, Heidelberg (1999)
Hustadt, U., Schmidt, R.A.: Issues of decidability for description logics in the framework of resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 191–205. Springer, Heidelberg (2000)
Hustadt, U., Schmidt, R.A.: Using resolution for testing modal satisfiability and building models. To appear in J. Automated Reasoning (2000)
Hustadt, U., Schmidt, R.A., Weidenbach, C.: Optimised functional translation and resolution. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 36–37. Springer, Heidelberg (1998)
Nonnengart, A.: First-order modal logic theorem proving and functional simulation. In: Proc. IJCAI 1993, pp. 80–85. Morgan Kaufmann, San Francisco (1993)
Nonnengart, A., Rock, G., Weidenbach, C.: On generating small clause normal forms. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 397–411. Springer, Heidelberg (1998)
Ohlbach, H.J.: Semantics based translation methods for modal logics. J. Logic Computat. 1(5), 691–746 (1991)
Ohlbach, H.J., Schmidt, R.A.: Functional translation and second-order frame properties of modal logics. J. Logic Computat. 7(5), 581–603 (1997)
Schmidt, R.A.: Decidability by resolution for propositional modal logics. J. Automated Reasoning 22(4), 379–396 (1999)
Schmidt, R.A.: MSPASS (1999), http://www.cs.man.ac.uk/~schmidt/mspass/
Sutcliffe, G., Suttner, C.B.: The CADE-14 ATP system competition. J. Automated Reasoning 21(1), 99–134 (1998)
Weidenbach, C.: SPASS (1999), http://spass.mpi-sb.mpg.de
Weidenbach, C.: SPASS: Combining superposition, sorts and splitting. In: Handbook of Automated Reasoning. Elsevier, Amsterdam (2000) (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hustadt, U., Schmidt, R.A. (2000). MSPASS: Modal Reasoning by Translation and First-Order Resolution. In: Dyckhoff, R. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2000. Lecture Notes in Computer Science(), vol 1847. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722086_7
Download citation
DOI: https://doi.org/10.1007/10722086_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67697-3
Online ISBN: 978-3-540-45008-5
eBook Packages: Springer Book Archive