Abstract
We investigate the effectiveness of the divide set produced by watershed algorithms. We introduce the mosaic to retrieve the altitude of points along the divide set. A desirable property is that, when two minima are separated by a crest in the original image, they are still separated by a crest of the same altitude in the mosaic. Our main result states that this is the case if and only if the mosaic is obtained through a topological thinning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G. Bertrand. On topological watersheds. Journal of Mathematical Imaging and Vision, 22, pp. 217–230, 2005. Special issue on Mathematical Morphology.
S. Beucher. Segmentation d’images et morphologie mathématique. PhD thesis, Éole des Mines de Paris, France, 1990.
S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In J. Serra and P. Soille, editors, Proc. Mathematical Morphology and its Applications to Image Processing, pages 69–76, Fontainebleau, France, 1994. Kluwer.
S. Beucher and C. Lantuéjoul. Use of watersheds in contour detection. In Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes, France, 1979.
M. Couprie and G. Bertrand. Topological grayscale watershed transform. In SPIE Vision Geometry V Proceedings, volume 3168, pages 136–146, 1997.
M. Couprie, L. Najman, and G. Bertrand. Quasi-linear algorithms for topological watershed. Journal of Mathematical Imaging and Vision, 22, pp. 231–249, 2005. Special issue on Mathematical Morphology.
F. Meyer. Un algorithme optimal de ligne de partage des eaux. In Actes du 8ème Congrès AFCET, pages 847–859, Lyon-Villeurbanne, France, 1991.
F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communication and Image Representation, 1(1):21–46, 1990.
L. Najman and M. Couprie. DGCI’03, volume 2886 of LNCS, chapter Watershed algorithms and contrast preservation, pages 62–71. Springer Verlag, 2003.
L. Najman, M. Couprie, and G. Bertrand. Watersheds, mosaics, and the emergence paradigm. Discrete Applied Mathematics, 2005. In press.
L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. on PAMI, 18(12):1163–1173, December 1996.
J.B.T.M. Roerdink and A. Meijster. The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae, 41:187–228, 2000.
A. Rosenfeld. On connectivity properties of grayscale pictures. Pattern Recognition, 16:47–50, 1983.
L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. on PAMI, 13(6):583–598, June 1991.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this paper
Cite this paper
Najman, L., Couprie, M., Bertrand, G. (2005). Mosaics and Watersheds. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_17
Download citation
DOI: https://doi.org/10.1007/1-4020-3443-1_17
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3442-8
Online ISBN: 978-1-4020-3443-5
eBook Packages: Computer ScienceComputer Science (R0)