The Morphological-Affine Object Deformation | SpringerLink
Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 18))

Abstract

The combination of morphological interpolation and affine transformation is presented. The proposed approach unites the advantages of both methods: the displacement is performed by using affine transformation, and the shape deformation by morphological interpolation. It allows the transformation of one binary set into another in semi-automatic or fully-automatic way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serge Beucher. Interpolation of sets, of partitions and of functions In H. Heijmans and J. Roerdink Mathematical morphology and its application to image and signal processing, Kluwer, 1998.

    Google Scholar 

  2. Serge Beucher. Interpolation d’ensembles, de partitions et de fonctions Tech.Rep. N-18/94/MM Centre de Morphologie Mathematique, Ecole des Mines de Paris.

    Google Scholar 

  3. James D. Foley, Andries van Damm, Steven K. Feiner, John F. Hughes and Richard L. Philips. Introduction to computer graphics Addison-Wesley, 1994,1990.

    Google Scholar 

  4. Fernand Meyer. Morphological interpolation method for mosaic images In P. Maragos, R.W. Schafer, M.A. Butt Mathematical morphology and its application to image and signal processing, Kluwer, 1996.

    Google Scholar 

  5. Fernand Meyer. Interpolations Tech.Rep. N-16/94/MM Centre de Morphologie Mathematique, Ecole des Mines de Paris.

    Google Scholar 

  6. Jean Serra. Interpolations et distance de Hausdorff Tech.Rep. N-15/94/MM Centre de Morphologie Mathematique, Ecole des Mines de Paris.

    Google Scholar 

  7. Jean Serra. Hausdorff distance and interpolations In H. Heijmans and J. Roerdink Mathematical morphology and its application to image and signal processing, Kluwer, 1998.

    Google Scholar 

  8. George Wolberg. Digital Image Warping IEEE Computer Society Press, Los Alamos CA, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Iwanowski, M., Serra, J. (2002). The Morphological-Affine Object Deformation. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol 18. Springer, Boston, MA. https://doi.org/10.1007/0-306-47025-X_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47025-X_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7862-4

  • Online ISBN: 978-0-306-47025-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics