Abstract
The combination of morphological interpolation and affine transformation is presented. The proposed approach unites the advantages of both methods: the displacement is performed by using affine transformation, and the shape deformation by morphological interpolation. It allows the transformation of one binary set into another in semi-automatic or fully-automatic way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Serge Beucher. Interpolation of sets, of partitions and of functions In H. Heijmans and J. Roerdink Mathematical morphology and its application to image and signal processing, Kluwer, 1998.
Serge Beucher. Interpolation d’ensembles, de partitions et de fonctions Tech.Rep. N-18/94/MM Centre de Morphologie Mathematique, Ecole des Mines de Paris.
James D. Foley, Andries van Damm, Steven K. Feiner, John F. Hughes and Richard L. Philips. Introduction to computer graphics Addison-Wesley, 1994,1990.
Fernand Meyer. Morphological interpolation method for mosaic images In P. Maragos, R.W. Schafer, M.A. Butt Mathematical morphology and its application to image and signal processing, Kluwer, 1996.
Fernand Meyer. Interpolations Tech.Rep. N-16/94/MM Centre de Morphologie Mathematique, Ecole des Mines de Paris.
Jean Serra. Interpolations et distance de Hausdorff Tech.Rep. N-15/94/MM Centre de Morphologie Mathematique, Ecole des Mines de Paris.
Jean Serra. Hausdorff distance and interpolations In H. Heijmans and J. Roerdink Mathematical morphology and its application to image and signal processing, Kluwer, 1998.
George Wolberg. Digital Image Warping IEEE Computer Society Press, Los Alamos CA, 1990.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Kluwer Academic/Plenum Publishers
About this chapter
Cite this chapter
Iwanowski, M., Serra, J. (2002). The Morphological-Affine Object Deformation. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol 18. Springer, Boston, MA. https://doi.org/10.1007/0-306-47025-X_10
Download citation
DOI: https://doi.org/10.1007/0-306-47025-X_10
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-7923-7862-4
Online ISBN: 978-0-306-47025-7
eBook Packages: Springer Book Archive