default search action
D. Sculley
Person information
- affiliation: Tufts University, Medford, USA
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [c30]Mark Mazumder, Colby R. Banbury, Xiaozhe Yao, Bojan Karlas, William Gaviria Rojas, Sudnya Frederick Diamos, Greg Diamos, Lynn He, Alicia Parrish, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Douwe Kiela, David Jurado, David Kanter, Rafael Mosquera, Will Cukierski, Juan Ciro, Lora Aroyo, Bilge Acun, Lingjiao Chen, Mehul Raje, Max Bartolo, Evan Sabri Eyuboglu, Amirata Ghorbani, Emmett D. Goodman, Addison Howard, Oana Inel, Tariq Kane, Christine R. Kirkpatrick, D. Sculley, Tzu-Sheng Kuo, Jonas W. Mueller, Tristan Thrush, Joaquin Vanschoren, Margaret Warren, Adina Williams, Serena Yeung, Newsha Ardalani, Praveen K. Paritosh, Ce Zhang, James Y. Zou, Carole-Jean Wu, Cody Coleman, Andrew Y. Ng, Peter Mattson, Vijay Janapa Reddi:
DataPerf: Benchmarks for Data-Centric AI Development. NeurIPS 2023 - [i16]Alicia Parrish, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Max Bartolo, Oana Inel, Juan Ciro, Rafael Mosquera, Addison Howard, Will Cukierski, D. Sculley, Vijay Janapa Reddi, Lora Aroyo:
Adversarial Nibbler: A Data-Centric Challenge for Improving the Safety of Text-to-Image Models. CoRR abs/2305.14384 (2023) - 2022
- [j3]Alexander D'Amour, Katherine A. Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yi-An Ma, Cory Y. McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley:
Underspecification Presents Challenges for Credibility in Modern Machine Learning. J. Mach. Learn. Res. 23: 226:1-226:61 (2022) - [i15]Dustin Tran, Jeremiah Z. Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado, Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, Balaji Lakshminarayanan:
Plex: Towards Reliability using Pretrained Large Model Extensions. CoRR abs/2207.07411 (2022) - 2021
- [c29]Shanqing Cai, Lisie Lillianfeld, Katie Seaver, Jordan R. Green, Michael P. Brenner, Philip C. Nelson, D. Sculley:
A Voice-Activated Switch for Persons with Motor and Speech Impairments: Isolated-Vowel Spotting Using Neural Networks. Interspeech 2021: 4823-4827 - [i14]Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael W. Dusenberry, Sebastian Farquhar, Angelos Filos, Marton Havasi, Rodolphe Jenatton, Ghassen Jerfel, Jeremiah Z. Liu, Zelda Mariet, Jeremy Nixon, Shreyas Padhy, Jie Ren, Tim G. J. Rudner, Yeming Wen, Florian Wenzel, Kevin Murphy, D. Sculley, Balaji Lakshminarayanan, Jasper Snoek, Yarin Gal, Dustin Tran:
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning. CoRR abs/2106.04015 (2021) - 2020
- [c28]Alexander D'Amour, Hansa Srinivasan, James Atwood, Pallavi Baljekar, D. Sculley, Yoni Halpern:
Fairness is not static: deeper understanding of long term fairness via simulation studies. FAT* 2020: 525-534 - [c27]Christof Angermüller, David Belanger, Andreea Gane, Zelda Mariet, David Dohan, Kevin Murphy, Lucy J. Colwell, D. Sculley:
Population-Based Black-Box Optimization for Biological Sequence Design. ICML 2020: 324-334 - [i13]Christof Angermüller, David Belanger, Andreea Gane, Zelda Mariet, David Dohan, Kevin Murphy, Lucy J. Colwell, D. Sculley:
Population-Based Black-Box Optimization for Biological Sequence Design. CoRR abs/2006.03227 (2020) - [i12]Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D'Amour, Balaji Lakshminarayanan, Jasper Snoek:
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift. CoRR abs/2006.10963 (2020) - [i11]Alexander D'Amour, Katherine A. Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yi-An Ma, Cory Y. McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley:
Underspecification Presents Challenges for Credibility in Modern Machine Learning. CoRR abs/2011.03395 (2020)
2010 – 2019
- 2019
- [c26]Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee, Zachary Nado, D. Sculley, Tiark Rompf, Alexander B. Wiltschko:
AutoGraph: Imperative-style Coding with Graph-based Performance. SysML 2019 - [c25]Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping Yu, Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, Stan Bileschi, Michael Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin, D. Sculley, Rajat Monga, Greg Corrado, Fernanda B. Viégas, Martin Wattenberg:
TensorFlow.js: Machine Learning For The Web and Beyond. SysML 2019 - [c24]Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin, D. Sculley, Joshua V. Dillon, Jie Ren, Zachary Nado:
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift. NeurIPS 2019: 13969-13980 - [i10]Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping Yu, Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, Stan Bileschi, Michael Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin, D. Sculley, Rajat Monga, Greg Corrado, Fernanda B. Viégas, Martin Wattenberg:
TensorFlow.js: Machine Learning for the Web and Beyond. CoRR abs/1901.05350 (2019) - [i9]D. Sculley, Jasper Snoek, Alexander B. Wiltschko:
Avoiding a Tragedy of the Commons in the Peer Review Process. CoRR abs/1901.06246 (2019) - [i8]Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V. Dillon, Balaji Lakshminarayanan, Jasper Snoek:
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift. CoRR abs/1906.02530 (2019) - [i7]James Atwood, Hansa Srinivasan, Yoni Halpern, David Sculley:
Fair treatment allocations in social networks. CoRR abs/1911.05489 (2019) - 2018
- [c23]D. Sculley, Jasper Snoek, Alexander B. Wiltschko, Ali Rahimi:
Winner's Curse? On Pace, Progress, and Empirical Rigor. ICLR (Workshop) 2018 - [i6]Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee, Zachary Nado, D. Sculley, Tiark Rompf, Alexander B. Wiltschko:
AutoGraph: Imperative-style Coding with Graph-based Performance. CoRR abs/1810.08061 (2018) - [i5]Alexey A. Gritsenko, Alex D'Amour, James Atwood, Yoni Halpern, D. Sculley:
BriarPatches: Pixel-Space Interventions for Inducing Demographic Parity. CoRR abs/1812.06869 (2018) - 2017
- [c22]Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley:
The ML test score: A rubric for ML production readiness and technical debt reduction. IEEE BigData 2017: 1123-1132 - [c21]Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, D. Sculley:
Google Vizier: A Service for Black-Box Optimization. KDD 2017: 1487-1495 - [c20]Heng-Tze Cheng, Zakaria Haque, Lichan Hong, Mustafa Ispir, Clemens Mewald, Illia Polosukhin, Georgios Roumpos, D. Sculley, Jamie Smith, David Soergel, Yuan Tang, Philipp Tucker, Martin Wicke, Cassandra Xia, Jianwei Xie:
TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks. KDD 2017: 1763-1771 - [c19]Yaniv Ovadia, Yoni Halpern, Dilip Krishnan, Josh Livni, Daniel E. Newburger, Ryan Poplin, Tiantian Zha, D. Sculley:
Learning to Count Mosquitoes for the Sterile Insect Technique. KDD 2017: 1943-1949 - [i4]Heng-Tze Cheng, Zakaria Haque, Lichan Hong, Mustafa Ispir, Clemens Mewald, Illia Polosukhin, Georgios Roumpos, D. Sculley, Jamie Smith, David Soergel, Yuan Tang, Philipp Tucker, Martin Wicke, Cassandra Xia, Jianwei Xie:
TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks. CoRR abs/1708.02637 (2017) - [i3]Daniel Smilkov, Shan Carter, D. Sculley, Fernanda B. Viégas, Martin Wattenberg:
Direct-Manipulation Visualization of Deep Networks. CoRR abs/1708.03788 (2017) - 2016
- [i2]Brian Patton, Yannis Agiomyrgiannakis, Michael Terry, Kevin W. Wilson, Rif A. Saurous, D. Sculley:
AutoMOS: Learning a non-intrusive assessor of naturalness-of-speech. CoRR abs/1611.09207 (2016) - 2015
- [c18]D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison:
Hidden Technical Debt in Machine Learning Systems. NIPS 2015: 2503-2511 - 2013
- [c17]Daniel Golovin, D. Sculley, H. Brendan McMahan, Michael Young:
Large-Scale Learning with Less RAM via Randomization. ICML (2) 2013: 325-333 - [c16]H. Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos, Jeremy Kubica:
Ad click prediction: a view from the trenches. KDD 2013: 1222-1230 - [i1]Daniel Golovin, D. Sculley, H. Brendan McMahan, Michael Young:
Large-Scale Learning with Less RAM via Randomization. CoRR abs/1303.4664 (2013) - 2011
- [c15]D. Sculley, Matthew Eric Otey, Michael Pohl, Bridget Spitznagel, John Hainsworth, Yunkai Zhou:
Detecting adversarial advertisements in the wild. KDD 2011: 274-282 - 2010
- [c14]D. Sculley:
Combined regression and ranking. KDD 2010: 979-988 - [c13]D. Sculley:
Web-scale k-means clustering. WWW 2010: 1177-1178
2000 – 2009
- 2009
- [c12]D. Sculley, Robert G. Malkin, Sugato Basu, Roberto J. Bayardo:
Predicting bounce rates in sponsored search advertisements. KDD 2009: 1325-1334 - 2008
- [j2]Bradley M. Pasanek, D. Sculley:
Mining millions of metaphors. Lit. Linguistic Comput. 23(3): 345-360 (2008) - [j1]D. Sculley, Bradley M. Pasanek:
Meaning and mining: the impact of implicit assumptions in data mining for the humanities. Lit. Linguistic Comput. 23(4): 409-424 (2008) - [c11]D. Sculley:
On Free Speech and Civil Discourse: Filtering Abuse in Blog Comments. CEAS 2008 - [c10]D. Sculley, Gordon V. Cormack:
Filtering Email Spam in the Presence of Noisy User Feedback. CEAS 2008 - [c9]Xintao Wei, Lenore Cowen, Carla E. Brodley, Arthur Brady, D. Sculley, Donna K. Slonim:
A Distance-Based Method for Detecting Horizontal Gene Transfer in Whole Genomes. ISBRA 2008: 26-37 - 2007
- [c8]D. Sculley:
Online Active Learning Methods for Fast Label-Efficient Spam Filtering. CEAS 2007 - [c7]D. Sculley:
Practical learning from one-sided feedback. KDD 2007: 609-618 - [c6]D. Sculley:
Rank Aggregation for Similar Items. SDM 2007: 587-592 - [c5]D. Sculley, Gabriel Wachman:
Relaxed online SVMs for spam filtering. SIGIR 2007: 415-422 - [c4]David Sculley, Gabriel Wachman:
Relaxed Online SVMs in the TREC Spam Filtering Track. TREC 2007 - 2006
- [c3]D. Sculley, Carla E. Brodley:
Compression and Machine Learning: A New Perspective on Feature Space Vectors. DCC 2006: 332-332 - [c2]Gregory R. Crane, David Bamman, Lisa Cerrato, Alison Jones, David M. Mimno, Adrian Packel, David Sculley, Gabriel Weaver:
Beyond Digital Incunabula: Modeling the Next Generation of Digital Libraries. ECDL 2006: 353-366 - [c1]David Sculley, Gabriel Wachman, Carla E. Brodley:
Spam Filtering Using Inexact String Matching in Explicit Feature Space with On-Line Linear Classifiers. TREC 2006
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint