default search action
Nathan van de Wouw
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j106]Farhad Ghanipoor, Carlos Murguia, Peyman Mohajerin Esfahani, Nathan van de Wouw:
Robust fault estimators for nonlinear systems: An ultra-local model design. Autom. 171: 111920 (2025) - 2024
- [j105]Lars A. L. Janssen, Bart Besselink, Rob H. B. Fey, Nathan van de Wouw:
Modular model reduction of interconnected systems: A robust performance analysis perspective. Autom. 160: 111423 (2024) - [j104]Lars Van De Kamp, Joey Reinders, Bram Hunnekens, Tom Oomen, Nathan van de Wouw:
Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions. IFAC J. Syst. Control. 27: 100236 (2024) - [j103]Lars Van De Kamp, Bram Hunnekens, Nathan van de Wouw, Tom Oomen:
Improving breathing effort estimation in mechanical ventilation via optimal experiment design. IFAC J. Syst. Control. 29: 100270 (2024) - [j102]Marc Jungers, Mohammad Fahim Shakib, Nathan van de Wouw:
Discrete-Time Convergent Nonlinear Systems. IEEE Trans. Autom. Control. 69(10): 6731-6745 (2024) - [j101]Mohammad Amin Faghihi, Shabnam Tashakori, Ehsan Azadi Yazdi, Hossein Mohammadi, Mohammad Eghtesad, Nathan van de Wouw:
Control of Axial-Torsional Dynamics of a Distributed Drilling System. IEEE Trans. Control. Syst. Technol. 32(1): 15-30 (2024) - [j100]Luuk Poort, Bart Besselink, Rob H. B. Fey, Nathan van de Wouw:
Balancing-Based Reduction for Interconnected Passive Systems. IEEE Trans. Control. Syst. Technol. 32(5): 1817-1826 (2024) - [j99]Chris van der Ploeg, Truls Nyberg, José Manuel Gaspar Sánchez, Emilia Silvas, Nathan van de Wouw:
Overcoming Fear of the Unknown: Occlusion-Aware Model-Predictive Planning for Automated Vehicles Using Risk Fields. IEEE Trans. Intell. Transp. Syst. 25(9): 12591-12604 (2024) - [j98]Jari J. van Steen, Gijs van den Brandt, Nathan van de Wouw, Jens Kober, Alessandro Saccon:
Quadratic Programming-Based Reference Spreading Control for Dual-Arm Robotic Manipulation With Planned Simultaneous Impacts. IEEE Trans. Robotics 40: 3341-3355 (2024) - [c138]L. M. Spin, Chris Verhoek, W. P. M. H. Heemels, Nathan van de Wouw, Roland Tóth:
Unified Behavioral Data-Driven Performance Analysis A Generalized Plant Approach. ECC 2024: 894-899 - [c137]Farhad Ghanipoor, Carlos Murguia, Peyman Mohajerin Esfahani, Nathan van de Wouw:
Uncertainty Learning for LTI Systems with Stability Guarantees. ECC 2024: 2568-2573 - [c136]D. W. T. Alferink, Rob H. B. Fey, Nathan van de Wouw, Marcel François Heertjes:
Hysteresis in Motion Control Systems: A Frequency Domain Approach. ECC 2024: 2825-2830 - [c135]Bharath Bhaskar Mahadikar, Nishant Rajesh, Kevin Tom Kurian, Erjen Lefeber, Jeroen Ploeg, Nathan van de Wouw, Mohsen Alirezaei:
Formulating a dissimilarity metric for comparison of driving scenarios for Automated Driving Systems. IV 2024: 1091-1098 - [c134]Leon Tolksdorf, Christian Birkner, Arturo Tejada, Nathan van de Wouw:
Fast Collision Probability Estimation for Automated Driving using Multi-circular Shape Approximations. IV 2024: 2529-2536 - [i39]Lars A. L. Janssen, Rob H. B. Fey, Bart Besselink, Nathan van de Wouw:
Modular Redesign of Mechatronic Systems: Formulation of Module Specifications Guaranteeing System Dynamics Specifications. CoRR abs/2402.06589 (2024) - [i38]Robert A. Egelmeers, Lars A. L. Janssen, Rob H. B. Fey, Jasper Gerritsen, Nathan van de Wouw:
Reduced-order Modeling of Modular, Position-dependent Systems with Translating Interfaces. CoRR abs/2402.06829 (2024) - [i37]Haleh Hayati, Nathan van de Wouw, Carlos Murguia:
Privacy in Cloud Computing through Immersion-based Coding. CoRR abs/2403.04485 (2024) - [i36]Mischa Huisman, Carlos Murguia, Erjen Lefeber, Nathan van de Wouw:
Optimal Controller Realizations against False Data Injections in Cooperative Driving. CoRR abs/2404.05361 (2024) - [i35]Leon Tolksdorf, Christian Birkner, Arturo Tejada, Nathan van de Wouw:
Fast Collision Probability Estimation for Automated Driving using Multi-circular Shape Approximations. CoRR abs/2405.10765 (2024) - [i34]Farhad Ghanipoor, Carlos Murguia, Peyman Mohajerin Esfahani, Nathan van de Wouw:
Model Updating for Nonlinear Systems with Stability Guarantees. CoRR abs/2406.06116 (2024) - [i33]Pascal den Boef, Diana Manvelyan, Joseph M. Maubach, Wil H. A. Schilders, Nathan van de Wouw:
Stable Sparse Operator Inference for Nonlinear Structural Dynamics. CoRR abs/2407.21672 (2024) - [i32]Haleh Hayati, Carlos Murguia, Nathan van de Wouw:
Immersion and Invariance-based Coding for Privacy-Preserving Federated Learning. CoRR abs/2409.17201 (2024) - 2023
- [j97]Mohammad Fahim Shakib, Giordano Scarciotti, Alexander Yu. Pogromsky, Alexey Pavlov, Nathan van de Wouw:
Time-domain moment matching for multiple-input multiple-output linear time-invariant models. Autom. 152: 110935 (2023) - [j96]Mohammad Fahim Shakib, Giordano Scarciotti, Alexander Yu. Pogromsky, Alexey Pavlov, Nathan van de Wouw:
Model reduction by moment matching with preservation of global stability for a class of nonlinear models. Autom. 157: 111227 (2023) - [j95]Joey Reinders, David Elshove, Bram Hunnekens, Nathan van de Wouw, Tom Oomen:
Triggered Repetitive Control: Application to Mechanically Ventilated Patients. IEEE Trans. Control. Syst. Technol. 31(4): 1581-1593 (2023) - [j94]Joey Reinders, Mattia Giaccagli, Bram Hunnekens, Daniele Astolfi, Tom Oomen, Nathan van de Wouw:
Repetitive Control for Lur'e-Type Systems: Application to Mechanical Ventilation. IEEE Trans. Control. Syst. Technol. 31(4): 1819-1829 (2023) - [c133]Jari J. van Steen, Nathan van de Wouw, Alessandro Saccon:
Robot Control for Simultaneous Impact Tasks through Time-Invariant Reference Spreading. ACC 2023: 46-53 - [c132]Haleh Hayati, Nathan van de Wouw, Carlos Murguia:
Infinite Horizon Privacy in Networked Control Systems: Utility/Privacy Tradeoffs and Design Tools. CDC 2023: 1847-1852 - [c131]Erik Steur, Alexey Pavlov, Nathan van de Wouw:
Design of Nonlinear Coupling for Efficient Synchronization in Networks of Nonlinear Systems. CDC 2023: 2883-2890 - [c130]Mohammad Fahim Shakib, Roland Tóth, Alexander Yu. Pogromsky, A. Pavlov, Nathan van de Wouw:
Kernel-Based Learning of Stable Nonlinear State-Space Models. CDC 2023: 2897-2902 - [c129]Mischa Huisman, Carlos Murguia, Erjen Lefeber, Nathan van de Wouw:
Impact Sensitivity Analysis of Cooperative Adaptive Cruise Control Against Resource-Limited Adversaries. CDC 2023: 5105-5110 - [c128]Wouter Weekers, Alessandro Saccon, Nathan van de Wouw:
Data-Efficient Static Cost Optimization via Extremum-Seeking Control with Kernel-Based Function Approximation. CDC 2023: 6761-6767 - [c127]Aykut Isleyen, Nathan van de Wouw, Ömür Arslan:
Adaptive Headway Motion Control and Motion Prediction for Safe Unicycle Motion Design. CDC 2023: 6942-6949 - [c126]Aykut Isleyen, Nathan van de Wouw, Ömür Arslan:
Feedback Motion Prediction for Safe Unicycle Robot Navigation. IROS 2023: 10511-10518 - [c125]Leon Tolksdorf, Arturo Tejada, Nathan van de Wouw, Christian Birkner:
Risk in Stochastic and Robust Model Predictive Path-Following Control for Vehicular Motion Planning. IV 2023: 1-8 - [i31]Lars A. L. Janssen, Bart Besselink, Rob H. B. Fey, Nathan van de Wouw:
Modular Model Reduction of Interconnected Systems: A Top-Down Approach. CoRR abs/2301.08510 (2023) - [i30]Haleh Hayati, Nathan van de Wouw, Carlos Murguia:
Infinite Horizon Privacy in Networked Control Systems: Utility/Privacy Tradeoffs and Design Tools. CoRR abs/2303.17519 (2023) - [i29]L. M. Spin, Chris Verhoek, W. P. Maurice H. Heemels, Nathan van de Wouw, Roland Tóth:
Unified Behavioral Data-Driven Performance Analysis: A Generalized Plant Approach. CoRR abs/2304.01859 (2023) - [i28]Mischa Huisman, Carlos Murguia, Erjen Lefeber, Nathan van de Wouw:
Impact Sensitivity Analysis of Cooperative Adaptive Cruise Control Against Resource-Limited Adversaries. CoRR abs/2304.02395 (2023) - [i27]Aykut Isleyen, Nathan van de Wouw, Ömür Arslan:
Adaptive Headway Motion Control and Motion Prediction for Safe Unicycle Motion Design. CoRR abs/2304.02760 (2023) - [i26]Lars A. L. Janssen, Bart Besselink, Rob H. B. Fey, Nathan van de Wouw:
Translating Assembly Accuracy Requirements to Cut-Off Frequencies for Component Mode Synthesis. CoRR abs/2304.05021 (2023) - [i25]Jari J. van Steen, Gijs van den Brandt, Nathan van de Wouw, Jens Kober, Alessandro Saccon:
Quadratic Programming-based Reference Spreading Control for Dual-Arm Robotic Manipulation with Planned Simultaneous Impacts. CoRR abs/2305.08643 (2023) - [i24]Farhad Ghanipoor, Carlos Murguia, Peyman Mohajerin Esfahani, Nathan van de Wouw:
Robust Fault Estimators for Nonlinear Systems: An Ultra-Local Model Design. CoRR abs/2305.14036 (2023) - [i23]Chris van der Ploeg, Truls Nyberg, José Manuel Gaspar Sánchez, Emilia Silvas, Nathan van de Wouw:
Overcoming the Fear of the Dark: Occlusion-Aware Model-Predictive Planning for Automated Vehicles Using Risk Fields. CoRR abs/2309.15501 (2023) - [i22]Lars A. L. Janssen, Rob H. B. Fey, Bart Besselink, Nathan van de Wouw:
Mode Selection for Component Mode Synthesis with Guaranteed Assembly Accuracy. CoRR abs/2310.17320 (2023) - [i21]Farhad Ghanipoor, Carlos Murguia, Peyman Mohajerin Esfahani, Nathan van de Wouw:
Uncertainty Learning for LTI Systems with Stability Guarantees. CoRR abs/2310.20568 (2023) - [i20]Pascal den Boef, Joseph M. Maubach, Wil H. A. Schilders, Nathan van de Wouw:
Stochastic Optimization of Large-Scale Parametrized Dynamical Systems. CoRR abs/2311.08115 (2023) - [i19]Luuk Poort, Bart Besselink, Rob H. B. Fey, Nathan van de Wouw:
Passivity-Preserving, Balancing-Based Model Reduction for Interconnected Systems. CoRR abs/2311.13214 (2023) - 2022
- [j93]Mohammad Fahim Shakib, Alexander Yu. Pogromsky, Alexey Pavlov, Nathan van de Wouw:
Computationally efficient identification of continuous-time Lur'e-type systems with stability guarantees. Autom. 136: 110012 (2022) - [j92]Alexey Pavlov, Erik Steur, Nathan van de Wouw:
Nonlinear integral coupling for synchronization in networks of nonlinear systems. Autom. 140: 110202 (2022) - [j91]Leroy Hazeleger, Dragan Nesic, Nathan van de Wouw:
Sampled-data extremum-seeking framework for constrained optimization of nonlinear dynamical systems. Autom. 142: 110415 (2022) - [j90]Chris van der Ploeg, Emilia Silvas, Nathan van de Wouw, Peyman Mohajerin Esfahani:
Real-Time Fault Estimation for a Class of Discrete-Time Linear Parameter-Varying Systems. IEEE Control. Syst. Lett. 6: 1988-1993 (2022) - [j89]Aykut Isleyen, Nathan van de Wouw, Ömür Arslan:
From Low to High Order Motion Planners : Safe Robot Navigation Using Motion Prediction and Reference Governor. IEEE Robotics Autom. Lett. 7(4): 9715-9722 (2022) - [j88]Chris van der Ploeg, Mohsen Alirezaei, Nathan van de Wouw, Peyman Mohajerin Esfahani:
Multiple Faults Estimation in Dynamical Systems: Tractable Design and Performance Bounds. IEEE Trans. Autom. Control. 67(9): 4916-4923 (2022) - [j87]Shabnam Tashakori, Gholamreza Vossoughi, Hassan Zohoor, Nathan van de Wouw:
Prediction-Based Control for Mitigation of Axial-Torsional Vibrations in a Distributed Drill-String System. IEEE Trans. Control. Syst. Technol. 30(1): 277-293 (2022) - [j86]Ruud Beerens, Andrea Bisoffi, Luca Zaccarian, Henk Nijmeijer, Maurice Heemels, Nathan van de Wouw:
Reset PID Design for Motion Systems With Stribeck Friction. IEEE Trans. Control. Syst. Technol. 30(1): 294-310 (2022) - [j85]Bardia Sharif, Annemiek van der Maas, Nathan van de Wouw, W. P. M. H. Heemels:
Filtered Split-Path Nonlinear Integrator: A Hybrid Controller for Transient Performance Improvement. IEEE Trans. Control. Syst. Technol. 30(2): 451-463 (2022) - [j84]Leroy Hazeleger, Jeroen van de Wijdeven, Markus Haring, Nathan van de Wouw:
Extremum Seeking With Enhanced Convergence Speed for Optimization of Time-Varying Steady-State Behavior of Industrial Motion Stages. IEEE Trans. Control. Syst. Technol. 30(2): 464-480 (2022) - [c124]Lars Janssen, Bart Besselink, Rob H. B. Fey, Mohammad Hossein Abbasi, Nathan van de Wouw:
A Priori Error Bounds for Model Reduction of Interconnected Linear Systems using Robust Performance Analysis. ACC 2022: 1867-1872 - [c123]Jan de Priester, Ricardo G. Sanfelice, Nathan van de Wouw:
Hysteresis-Based RL: Robustifying Reinforcement Learning-based Control Policies via Hybrid Control. ACC 2022: 2663-2668 - [c122]Maarten Jongeneel, Alexandre Bernardino, Nathan van de Wouw, Alessandro Saccon:
Model-Based 6D Visual Object Tracking with Impact Collision Models. ACC 2022: 3850-3856 - [c121]Jari J. van Steen, Nathan van de Wouw, Alessandro Saccon:
Robot Control for Simultaneous Impact tasks via Quadratic Programming-based Reference Spreading. ACC 2022: 3865-3872 - [c120]Farhad Ghanipoor, Carlos Murguia, Peyman Mohajerin Esfahani, Nathan van de Wouw:
Ultra Local Nonlinear Unknown Input Observers for Robust Fault Reconstruction. CDC 2022: 918-923 - [c119]Haleh Hayati, Carlos Murguia, Nathan van de Wouw:
Privacy-Preserving Federated Learning via System Immersion and Random Matrix Encryption. CDC 2022: 6776-6781 - [c118]Mohammad Hossein Abbasi, Nathan van de Wouw:
Model Order Reduction of Linear Sampled-Data Control Systems. ECC 2022: 711-716 - [c117]Haleh Hayati, Carlos Murguia, Nathan van de Wouw:
Gaussian Mechanisms Against Statistical Inference: Synthesis Tools. ECC 2022: 1294-1300 - [i18]Aykut Isleyen, Nathan van de Wouw, Ömür Arslan:
From Low to High Order Motion Planners: Safe Robot Navigation using Motion Prediction and Reference Governor. CoRR abs/2202.12816 (2022) - [i17]Jan de Priester, Ricardo G. Sanfelice, Nathan van de Wouw:
Hysteresis-Based RL: Robustifying Reinforcement Learning-based Control Policies via Hybrid Control. CoRR abs/2204.00654 (2022) - [i16]Farhad Ghanipoor, Carlos Murguia, Peyman Mohajerin Esfahani, Nathan van de Wouw:
Ultra Local Nonlinear Unknown Input Observers for Robust Fault Reconstruction. CoRR abs/2204.01455 (2022) - [i15]Haleh Hayati, Carlos Murguia, Nathan van de Wouw:
Privacy-Preserving Federated Learning via System Immersion and Random Matrix Encryption. CoRR abs/2204.02497 (2022) - [i14]Jari J. van Steen, Nathan van de Wouw, Alessandro Saccon:
Robot Control for Simultaneous Impact Tasks through Time-Invariant Reference Spreading. CoRR abs/2206.04852 (2022) - [i13]Aykut Isleyen, Nathan van de Wouw, Ömür Arslan:
Feedback Motion Prediction for Safe Unicycle Robot Navigation. CoRR abs/2209.12648 (2022) - [i12]Lars A. L. Janssen, Bart Besselink, Rob H. B. Fey, Nathan van de Wouw:
Modular Model Reduction of Interconnected Systems: A Robust Performance Analysis Perspective. CoRR abs/2210.15958 (2022) - [i11]Haleh Hayati, Carlos Murguia, Nathan van de Wouw:
Privacy-Preserving Anomaly Detection in Stochastic Dynamical Systems: Synthesis of Optimal Gaussian Mechanisms. CoRR abs/2211.03698 (2022) - [i10]Farhad Ghanipoor, Carlos Murguia, Peyman Mohajerin Esfahani, Nathan van de Wouw:
Linear Fault Estimators for Nonlinear Systems: An Ultra-Local Model Design. CoRR abs/2211.06214 (2022) - [i9]Haleh Hayati, Nathan van de Wouw, Carlos Murguia:
Immersion and Invariance-based Coding for Privacy in Remote Anomaly Detection. CoRR abs/2211.11608 (2022) - [i8]Jari J. van Steen, Abdullah Cosgun, Nathan van de Wouw, Alessandro Saccon:
Dual Arm Impact-Aware Grasping through Time-Invariant Reference Spreading Control. CoRR abs/2212.00877 (2022) - 2021
- [j83]Jijju Thomas, Christophe Fiter, Laurentiu Hetel, Nathan van de Wouw, Jean-Pierre Richard:
Frequency-domain stability conditions for asynchronously sampled decentralized LTI systems. Autom. 129: 109603 (2021) - [j82]Jijju Thomas, Christophe Fiter, Laurentiu Hetel, Nathan van de Wouw, Jean-Pierre Richard:
Dissipativity-based framework for stability analysis of aperiodically sampled nonlinear systems with time-varying delay. Autom. 129: 109632 (2021) - [j81]Daniele Astolfi, Swann Marx, Nathan van de Wouw:
Repetitive control design based on forwarding for nonlinear minimum-phase systems. Autom. 129: 109671 (2021) - [j80]Harshit Bansal, Philipp Schulze, Mohammad Hossein Abbasi, Hans Zwart, Laura Iapichino, Wil H. A. Schilders, Nathan van de Wouw:
Port-Hamiltonian formulation of two-phase flow models. Syst. Control. Lett. 149: 104881 (2021) - [j79]Joey Reinders, Bram Hunnekens, Frank Heck, Tom Oomen, Nathan van de Wouw:
Adaptive Control for Mechanical Ventilation for Improved Pressure Support. IEEE Trans. Control. Syst. Technol. 29(1): 180-193 (2021) - [j78]Ruud Beerens, S. C. N. Thissen, W. C. M. Pancras, T. M. P. Gommans, Nathan van de Wouw, W. P. M. H. Heemels:
Control Allocation for an Industrial High-Precision Transportation and Positioning System. IEEE Trans. Control. Syst. Technol. 29(2): 876-883 (2021) - [j77]Sajad Naderi Lordejani, Bart Besselink, Mohammad Hossein Abbasi, Glenn-Ole Kaasa, Wil H. A. Schilders, Nathan van de Wouw:
Control-Oriented Modeling for Managed Pressure Drilling Automation Using Model Order Reduction. IEEE Trans. Control. Syst. Technol. 29(3): 1161-1174 (2021) - [j76]Leroy Hazeleger, Ruud Beerens, Nathan van de Wouw:
Proportional-Integral-Derivative-Based Learning Control for High-Accuracy Repetitive Positioning of Frictional Motion Systems. IEEE Trans. Control. Syst. Technol. 29(4): 1652-1663 (2021) - [c116]Mohammad Fahim Shakib, Giordano Scarciotti, Alexander Yu. Pogromsky, Alexey Pavlov, Nathan van de Wouw:
Model Reduction by Moment Matching for Convergent Lur'e-Type Models. ACC 2021: 4459-4464 - [c115]Joey Reinders, Bram Hunnekens, Tom Oomen, Nathan van de Wouw:
Linear repetitive control for a nonlinear mechanical ventilation system using feedback linearization. CCTA 2021: 719-726 - [c114]Haleh Hayati, Carlos Murguia, Nathan van de Wouw:
Finite Horizon Privacy of Stochastic Dynamical Systems: A Synthesis Framework for Gaussian Mechanisms. CDC 2021: 5607-5613 - [c113]Mohammad Fahim Shakib, Giordano Scarciotti, Marc Jungers, Alexander Yu. Pogromsky, Alexey Pavlov, Nathan van de Wouw:
Optimal H∞ LMI-Based Model Reduction by Moment Matching for Linear Time-Invariant Models. CDC 2021: 6914-6919 - [c112]Daniel van den Berg, Chris van der Ploeg, Mohsen Alirezaei, Nathan van de Wouw:
Lateral Vehicle Following in a Cooperative Vehicle Platooning Application: an H∞ approach. ECC 2021: 1802-1807 - [i7]Haleh Hayati, Carlos Murguia, Nathan van de Wouw:
Finite Horizon Privacy of Stochastic Dynamical Systems: A Synthesis Framework for Dependent Gaussian Mechanisms. CoRR abs/2108.01755 (2021) - [i6]Jari J. van Steen, Nathan van de Wouw, Alessandro Saccon:
Robot control for simultaneous impact tasks via QP based reference spreading. CoRR abs/2111.05211 (2021) - [i5]Haleh Hayati, Carlos Murguia, Nathan van de Wouw:
Gaussian Mechanisms Against Statistical Inference: Synthesis Tools. CoRR abs/2111.15307 (2021) - 2020
- [j75]Andrea Bisoffi, Ruud Beerens, W. P. M. H. Heemels, Hendrik Nijmeijer, Nathan van de Wouw, Luca Zaccarian:
To stick or to slip: A reset PID control perspective on positioning systems with friction. Annu. Rev. Control. 49: 37-63 (2020) - [j74]J. J. Benjamin Biemond, Romain Postoyan, W. P. Maurice H. Heemels, Nathan van de Wouw:
On the graphical stability of hybrid solutions with non-matching jump times. Autom. 111 (2020) - [j73]Sajad Naderi Lordejani, Bart Besselink, Antoine Chaillet, Nathan van de Wouw:
Model order reduction for linear time delay systems: A delay-dependent approach based on energy functionals. Autom. 112 (2020) - [j72]Leroy Hazeleger, Mark A. M. Haring, Nathan van de Wouw:
Extremum-seeking control for optimization of time-varying steady-state responses of nonlinear systems. Autom. 119: 109068 (2020) - [j71]Deesh Dileep, Jijju Thomas, Laurentiu Hetel, Nathan van de Wouw, Jean-Pierre Richard, Wim Michiels:
Design of L2 stable fixed-order decentralised controllers in a network of sampled-data systems with time-delays. Eur. J. Control 56: 73-85 (2020) - [j70]Mark Rijnen, J. J. Benjamin Biemond, Nathan van de Wouw, Alessandro Saccon, Henk Nijmeijer:
Hybrid Systems With State-Triggered Jumps: Sensitivity-Based Stability Analysis With Application to Trajectory Tracking. IEEE Trans. Autom. Control. 65(11): 4568-4583 (2020) - [j69]Bram Hunnekens, Sjors Kamps, Nathan van de Wouw:
Variable-Gain Control for Respiratory Systems. IEEE Trans. Control. Syst. Technol. 28(1): 163-171 (2020) - [j68]Farid Alavi, Nathan van de Wouw, Bart De Schutter:
Power Scheduling of Fuel Cell Cars in an Islanded Mode Microgrid With Private Driving Patterns. IEEE Trans. Control. Syst. Technol. 28(4): 1393-1403 (2020) - [j67]Alejandro Ivan Morales Medina, Falco Creemers, Erjen Lefeber, Nathan van de Wouw:
Optimal Access Management for Cooperative Intersection Control. IEEE Trans. Intell. Transp. Syst. 21(5): 2114-2127 (2020) - [c111]Mohammad Hossein Abbasi, Harshit Bansal, Hans Zwart, Laura Iapichino, Wil H. A. Schilders, Nathan van de Wouw:
Power-Preserving Interconnection of Single- and Two-Phase Flow Models for Managed Pressure Drilling. ACC 2020: 3097-3102 - [c110]Jijju Thomas, Erik Steur, Christophe Fiter, Laurentiu Hetel, Nathan van de Wouw:
Exponential Synchronization of Nonlinear Oscillators Under Sampled-Data Coupling. CDC 2020: 1824-1829 - [c109]Harshit Bansal, Siep Weiland, Laura Iapichino, Wil H. A. Schilders, Nathan van de Wouw:
Structure-preserving Spatial Discretization of a Two-Fluid Model. CDC 2020: 5062-5067 - [i4]Joey Reinders, Ruben Verkade, Bram Hunnekens, Nathan van de Wouw, Tom Oomen:
Improving mechanical ventilation for patient care through repetitive control. CoRR abs/2004.00312 (2020) - [i3]Chris van der Ploeg, Mohsen Alirezaei, Nathan van de Wouw, Peyman Mohajerin Esfahani:
Multiple Faults Estimation in Dynamical Systems: Tractable Design and Performance Bounds. CoRR abs/2011.13730 (2020)
2010 – 2019
- 2019
- [j66]Ruud Beerens, Andrea Bisoffi, Luca Zaccarian, W. P. M. H. Heemels, Henk Nijmeijer, Nathan van de Wouw:
Reset integral control for improved settling of PID-based motion systems with friction. Autom. 107: 483-492 (2019) - [j65]Thijs Vromen, Cam-Hing Dai, Nathan van de Wouw, Tom Oomen, Patricia Astrid, Apostolos Doris, Henk Nijmeijer:
Mitigation of Torsional Vibrations in Drilling Systems: A Robust Control Approach. IEEE Trans. Control. Syst. Technol. 27(1): 249-265 (2019) - [j64]Ellen van Nunen, Joey Reinders, Elham Semsar-Kazerooni, Nathan van de Wouw:
String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons. IEEE Trans. Intell. Veh. 4(2): 186-196 (2019) - [c108]K. G. J. Gruntjens, Marcel François Heertjes, S. J. L. M. van Loon, Nathan van de Wouw, W. P. M. H. Heemels:
Hybrid Integral Reset Control with Application to a Lens Motion System. ACC 2019: 2408-2413 - [c107]Mark Rijnen, Hao Liang Chen, Nathan van de Wouw, Alessandro Saccon, Henk Nijmeijer:
Sensitivity analysis for trajectories of nonsmooth mechanical systems with simultaneous impacts: a hybrid systems perspective. ACC 2019: 3623-3629 - [c106]Mohammad Fahim Shakib, Emmanuel Detournay, Nathan van de Wouw:
Delay complementarity modeling for dynamic analysis of directional drilling. ACC 2019: 5209-5214 - [c105]Joey Reinders, Frank Heck, Bram Hunnekens, Tom Oomen, Nathan van de Wouw:
Online hose calibration for pressure control in mechanical ventilation. ACC 2019: 5414-5419 - [c104]Leroy Hazeleger, Dragan Nesic, Nathan van de Wouw:
Sampled-data extremum-seeking control for optimization of constrained dynamical systems using barrier function methods. CDC 2019: 213-219 - [c103]Sajad Naderi Lordejani, Bart Besselink, Nathan van de Wouw:
An extended model order reduction technique for linear delay systems. CDC 2019: 7782-7787 - [c102]Harshit Bansal, Stephan Rave, Laura Iapichino, Wil H. A. Schilders, Nathan van de Wouw:
Model Order Reduction Framework for Problems with Moving Discontinuities. ENUMATH 2019: 83-91 - [i2]J. J. Benjamin Biemond, Romain Postoyan, W. P. M. H. Heemels, Nathan van de Wouw:
On the graphical stability of hybrid solutions with non-matching jump times: Extended Paper. CoRR abs/1906.02332 (2019) - 2018
- [j63]J. J. Benjamin Biemond, Romain Postoyan, W. P. Maurice H. Heemels, Nathan van de Wouw:
Incremental Stability of Hybrid Dynamical Systems. IEEE Trans. Autom. Control. 63(12): 4094-4109 (2018) - [j62]S. J. L. M. van Loon, B. G. B. Hunnekens, A. S. Simon, Nathan van de Wouw, W. P. M. H. Heemels:
Bandwidth-on-Demand Motion Control. IEEE Trans. Control. Syst. Technol. 26(1): 265-273 (2018) - [j61]Jeroen C. Zegers, Elham Semsar-Kazerooni, Jeroen Ploeg, Nathan van de Wouw, Henk Nijmeijer:
Consensus Control for Vehicular Platooning With Velocity Constraints. IEEE Trans. Control. Syst. Technol. 26(5): 1592-1605 (2018) - [j60]Jeroen Ploeg, Cristofer Englund, Henk Nijmeijer, Elham Semsar-Kazerooni, Steven E. Shladover, Alexey Voronov, Nathan van de Wouw:
Guest Editorial Introduction to the Special Issue on the 2016 Grand Cooperative Driving Challenge. IEEE Trans. Intell. Transp. Syst. 19(4): 1208-1212 (2018) - [j59]Jeroen Ploeg, Elham Semsar-Kazerooni, Alejandro Ivan Morales Medina, Jan F. C. M. de Jongh, Jacco van de Sluis, Alexey Voronov, Cristofer Englund, Reinder J. Bril, Hrishikesh Salunkhe, Alvaro Arrue, Aitor Ruano, Lorena Garcia-Sol, Ellen van Nunen, Nathan van de Wouw:
Cooperative Automated Maneuvering at the 2016 Grand Cooperative Driving Challenge. IEEE Trans. Intell. Transp. Syst. 19(4): 1213-1226 (2018) - [j58]Alejandro Ivan Morales Medina, Nathan van de Wouw, Henk Nijmeijer:
Cooperative Intersection Control Based on Virtual Platooning. IEEE Trans. Intell. Transp. Syst. 19(6): 1727-1740 (2018) - [c101]Nathan van de Wouw, Bram Hunnekens, Sjors Kamps:
Switching control of medical ventilation systems. ACC 2018: 532-538 - [c100]Ruud Beerens, Andrea Bisoffi, Luca Zaccarian, W. P. M. H. Heemels, Henk Nijmeijer, Nathan van de Wouw:
Hybrid PID control for transient performance improvement of motion systems with friction. ACC 2018: 539-544 - [c99]Leroy Hazeleger, Mark A. M. Haring, Nathan van de Wouw:
Extremum-seeking control for steady-state performance optimization of nonlinear plants with time-varying steady-state outputs. ACC 2018: 2990-2995 - [c98]Ruud Beerens, S. C. N. Thissen, Annemiek van der Maas, W. C. M. Pancras, T. M. P. Gommans, Nathan van de Wouw, W. P. M. H. Heemels:
Control allocation for a high-precision linear transport system. CDC 2018: 1657-1662 - [c97]Jijju Thomas, Laurentiu Hetel, Christophe Fiter, Nathan van de Wouw, Jean-Pierre Richard:
L2-Stability Criterion for Systems with Decentralized Asynchronous Controllers. CDC 2018: 6638-6643 - 2017
- [j57]S. J. L. M. van Loon, K. G. J. Gruntjens, Marcel François Heertjes, Nathan van de Wouw, W. P. M. H. Heemels:
Frequency-domain tools for stability analysis of reset control systems. Autom. 82: 101-108 (2017) - [j56]J. J. Benjamin Biemond, Wim Michiels, Nathan van de Wouw:
Stability Analysis of Equilibria of Linear Delay Complementarity Systems. IEEE Control. Syst. Lett. 1(1): 158-163 (2017) - [j55]Amir Firooznia, Jeroen Ploeg, Nathan van de Wouw, Hans Zwart:
Co-Design of Controller and Communication Topology for Vehicular Platooning. IEEE Trans. Intell. Transp. Syst. 18(10): 2728-2739 (2017) - [j54]Karel Kural, Pavlos Hatzidimitris, Nathan van de Wouw, Igo Besselink, Henk Nijmeijer:
Active Trailer Steering Control for High-Capacity Vehicle Combinations. IEEE Trans. Intell. Veh. 2(4): 251-265 (2017) - [c96]Annemiek van der Maas, Nathan van de Wouw, W. P. M. H. Heemels:
Filtered Split-Path Nonlinear Integrator (F-SPANI) for improved transient performance. ACC 2017: 3500-3505 - [c95]Bart Besselink, Antoine Chaillet, Nathan van de Wouw:
Model reduction for linear delay systems using a delay-independent balanced truncation approach. CDC 2017: 3793-3798 - [c94]Farid Alavi, Nathan van de Wouw, Bart De Schutter:
Power scheduling in islanded-mode microgrids using fuel cell vehicles. CDC 2017: 5056-5061 - [c93]Mark Rijnen, Eric de Mooij, Silvio Traversaro, Francesco Nori, Nathan van de Wouw, Alessandro Saccon, Henk Nijmeijer:
Control of humanoid robot motions with impacts: Numerical experiments with reference spreading control. ICRA 2017: 4102-4107 - [c92]Ellen van Nunen, Jan Verhaegh, Emilia Silvas, Elham Semsar-Kazerooni, Nathan van de Wouw:
Robust model predictive cooperative adaptive cruise control subject to V2V impairments. ITSC 2017: 1-8 - 2016
- [j53]Dennis J. F. Heck, Alessandro Saccon, Nathan van de Wouw, Henk Nijmeijer:
Guaranteeing stable tracking of hybrid position-force trajectories for a robot manipulator interacting with a stiff environment. Autom. 63: 235-247 (2016) - [j52]S. J. L. M. van Loon, B. G. B. Hunnekens, W. P. M. H. Heemels, Nathan van de Wouw, Henk Nijmeijer:
Split-path nonlinear integral control for transient performance improvement. Autom. 66: 262-270 (2016) - [j51]B. G. B. Hunnekens, Nathan van de Wouw, Dragan Nesic:
Overcoming a fundamental time-domain performance limitation by nonlinear control. Autom. 67: 277-281 (2016) - [j50]J. J. Benjamin Biemond, W. P. M. H. Heemels, Ricardo G. Sanfelice, Nathan van de Wouw:
Distance function design and Lyapunov techniques for the stability of hybrid trajectories. Autom. 73: 38-46 (2016) - [j49]Niek Antonius Henricus Kremers, Emmanuel Detournay, Nathan van de Wouw:
Model-Based Robust Control of Directional Drilling Systems. IEEE Trans. Control. Syst. Technol. 24(1): 226-239 (2016) - [j48]Paul Ritzen, Erik Roebroek, Nathan van de Wouw, Zhong-Ping Jiang, Henk Nijmeijer:
Trailer Steering Control of a Tractor-Trailer Robot. IEEE Trans. Control. Syst. Technol. 24(4): 1240-1252 (2016) - [j47]Bart Besselink, Thijs Vromen, Niek Antonius Henricus Kremers, Nathan van de Wouw:
Analysis and Control of Stick-Slip Oscillations in Drilling Systems. IEEE Trans. Control. Syst. Technol. 24(5): 1582-1593 (2016) - [c91]Jeroen C. Zegers, Elham Semsar-Kazerooni, Jeroen Ploeg, Nathan van de Wouw, Henk Nijmeijer:
Consensus-based bi-directional CACC for vehicular platooning. ACC 2016: 2578-2584 - [c90]Farid Alavi, Nathan van de Wouw, Bart De Schutter:
Min-max control of fuel-cell-car-based smart energy systems. ECC 2016: 1223-1228 - [c89]Mauro Fusco, Elham Semsar-Kazerooni, Jeroen Ploeg, Nathan van de Wouw:
Vehicular platooning: Multi-Layer Consensus Seeking. Intelligent Vehicles Symposium 2016: 382-387 - 2015
- [j46]Nathan van de Wouw, Wim Michiels, Bart Besselink:
Model reduction for delay differential equations with guaranteed stability and error bound. Autom. 55: 132-139 (2015) - [j45]Bram Hunnekens, Nathan van de Wouw, Marcel François Heertjes, Henk Nijmeijer:
Synthesis of Variable Gain Integral Controllers for Linear Motion Systems. IEEE Trans. Control. Syst. Technol. 23(1): 139-149 (2015) - [j44]Bram Hunnekens, Antonio Di Dino, Nathan van de Wouw, Niels van Dijk, Henk Nijmeijer:
Extremum-Seeking Control for the Adaptive Design of Variable Gain Controllers. IEEE Trans. Control. Syst. Technol. 23(3): 1041-1051 (2015) - [j43]Jeroen Ploeg, Elham Semsar-Kazerooni, Guido Lijster, Nathan van de Wouw, Henk Nijmeijer:
Graceful Degradation of Cooperative Adaptive Cruise Control. IEEE Trans. Intell. Transp. Syst. 16(1): 488-497 (2015) - [c88]D. J. F. Heck, Alessandro Saccon, Nathan van de Wouw, Henk Nijmeijer:
Switched position-force tracking control of a manipulator interacting with a stiff environment. ACC 2015: 4832-4837 - [c87]J. J. Benjamin Biemond, W. P. M. H. Heemels, Ricardo G. Sanfelice, Nathan van de Wouw:
Constructing distance functions and piecewise quadratic Lyapunov functions for stability of hybrid trajectories. CDC 2015: 2252-2257 - [c86]Nathan van de Wouw, Paul Ritzen, Erik Roebroek, Zhong-Ping Jiang, Henk Nijmeijer:
Active trailer steering for robotic tractor-trailer combinations. CDC 2015: 4073-4079 - [c85]Romain Postoyan, J. J. Benjamin Biemond, W. P. M. H. Heemels, Nathan van de Wouw:
Definitions of incremental stability for hybrid systems. CDC 2015: 5544-5549 - [c84]Nathan van de Wouw, Wim Michiels, Bart Besselink:
Model reduction for a class of nonlinear delay differential equations with time-varying delays. CDC 2015: 6422-6428 - [c83]Alejandro Ivan Morales Medina, Nathan van de Wouw, Henk Nijmeijer:
Automation of a T-intersection Using Virtual Platoons of Cooperative Autonomous Vehicles. ITSC 2015: 1696-1701 - [i1]D. J. F. Heck, Alessandro Saccon, Nathan van de Wouw, Henk Nijmeijer:
Switching control for tracking of a hybrid position-force trajectory. CoRR abs/1503.00603 (2015) - 2014
- [j42]Romain Postoyan, Nathan van de Wouw, Dragan Nesic, W. P. M. H. Heemels:
Tracking Control for Nonlinear Networked Control Systems. IEEE Trans. Autom. Control. 59(6): 1539-1554 (2014) - [j41]Bart Besselink, Nathan van de Wouw, Jacquelien M. A. Scherpen, Henk Nijmeijer:
Model Reduction for Nonlinear Systems by Incremental Balanced Truncation. IEEE Trans. Autom. Control. 59(10): 2739-2753 (2014) - [j40]Jeroen Ploeg, Nathan van de Wouw, Henk Nijmeijer:
${\cal L}_{p}$ String Stability of Cascaded Systems: Application to Vehicle Platooning. IEEE Trans. Control. Syst. Technol. 22(2): 786-793 (2014) - [j39]Alejandro Alvarez-Aguirre, Nathan van de Wouw, Toshiki Oguchi, Henk Nijmeijer:
Predictor-Based Remote Tracking Control of a Mobile Robot. IEEE Trans. Control. Syst. Technol. 22(6): 2087-2102 (2014) - [j38]Jeroen Ploeg, Dipan P. Shukla, Nathan van de Wouw, Henk Nijmeijer:
Controller Synthesis for String Stability of Vehicle Platoons. IEEE Trans. Intell. Transp. Syst. 15(2): 854-865 (2014) - [j37]Sinan Öncü, Jeroen Ploeg, Nathan van de Wouw, Henk Nijmeijer:
Cooperative Adaptive Cruise Control: Network-Aware Analysis of String Stability. IEEE Trans. Intell. Transp. Syst. 15(4): 1527-1537 (2014) - [c82]S. J. L. M. van Loon, B. G. B. Hunnekens, W. P. M. H. Heemels, Nathan van de Wouw, Henk Nijmeijer:
Transient performance improvement of linear systems using a split-path nonlinear integrator. ACC 2014: 341-346 - [c81]T. G. M. Vromen, Nathan van de Wouw, Apostolos Doris, Patricia Astrid, Henk Nijmeijer:
Observer-based output-feedback control to eliminate torsional drill-string vibrations. CDC 2014: 872-877 - [c80]B. G. B. Hunnekens, Mark A. M. Haring, Nathan van de Wouw, Henk Nijmeijer:
A dither-free extremum-seeking control approach using 1st-order least-squares fits for gradient estimation. CDC 2014: 2679-2684 - [c79]Alessandro Saccon, Nathan van de Wouw, Henk Nijmeijer:
Sensitivity analysis of hybrid systems with state jumps with application to trajectory tracking. CDC 2014: 3065-3070 - 2013
- [j36]Bart Besselink, Nathan van de Wouw, Henk Nijmeijer:
Model reduction for nonlinear systems with incremental gain or passivity properties. Autom. 49(4): 861-872 (2013) - [j35]Mark A. M. Haring, Nathan van de Wouw, Dragan Nesic:
Extremum-seeking control for nonlinear systems with periodic steady-state outputs. Autom. 49(6): 1883-1891 (2013) - [j34]Nicolas William Bauer, M. C. F. Donkers, Nathan van de Wouw, W. P. M. H. Heemels:
Decentralized observer-based control via networked communication. Autom. 49(7): 2074-2086 (2013) - [j33]Alexey V. Pavlov, B. G. B. Hunnekens, Nathan van de Wouw, Henk Nijmeijer:
Steady-state performance optimization for nonlinear control systems of Lur'e type. Autom. 49(7): 2087-2097 (2013) - [j32]T. M. P. Gommans, W. P. M. H. Heemels, Nicolas William Bauer, Nathan van de Wouw:
Compensation-based control for lossy communication networks. Int. J. Control 86(10): 1880-1897 (2013) - [j31]Björn Sebastian Rüffer, Nathan van de Wouw, Markus Mueller:
Convergent systems vs. incremental stability. Syst. Control. Lett. 62(3): 277-285 (2013) - [j30]Majid Zamani, Nathan van de Wouw, Rupak Majumdar:
Backstepping controller synthesis and characterizations of incremental stability. Syst. Control. Lett. 62(10): 949-962 (2013) - [j29]J. J. Benjamin Biemond, Nathan van de Wouw, W. P. M. H. Heemels, Hendrik Nijmeijer:
Tracking Control for Hybrid Systems With State-Triggered Jumps. IEEE Trans. Autom. Control. 58(4): 876-890 (2013) - [j28]Marcel François Heertjes, Ismail Hakki Sahin, Nathan van de Wouw, W. P. Maurice H. Heemels:
Switching Control in Vibration Isolation Systems. IEEE Trans. Control. Syst. Technol. 21(3): 626-635 (2013) - [c78]B. G. B. Hunnekens, Marcel François Heertjes, Nathan van de Wouw, Henk Nijmeijer:
Model-based piecewise affine variable-gain controller synthesis. ACC 2013: 6045-6050 - [c77]Marcel Heertjes, Bram Hunnekens, Nathan van de Wouw, Henk Nijmeijer:
Learning in the synthesis of data-driven variable-gain controllers. ACC 2013: 6685-6690 - [c76]Hans Zwart, Amir Firooznia, Jeroen Ploeg, Nathan van de Wouw:
Optimal control for non-exponentially stabilizable spatially invariant systems with an application to vehicular platooning. CDC 2013: 3038-3042 - [c75]W. P. M. H. Heemels, Dominicus P. Borgers, Nathan van de Wouw, Dragan Nesic, Andrew R. Teel:
Stability analysis of nonlinear networked control systems with asynchronous communication: A small-gain approach. CDC 2013: 4631-4637 - [c74]Bart Besselink, Nathan van de Wouw, Jacquelien M. A. Scherpen, Hendrik Nijmeijer:
Generalized incremental balanced truncation for nonlinear systems. CDC 2013: 5552-5557 - [c73]Majid Zamani, Nathan van de Wouw:
Controller synthesis for incremental stability: Application to symbolic controller synthesis. ECC 2013: 2198-2203 - [c72]Jeroen Ploeg, Elham Semsar-Kazerooni, Guido Lijster, Nathan van de Wouw, Henk Nijmeijer:
Graceful degradation of CACC performance subject to unreliable wireless communication. ITSC 2013: 1210-1216 - 2012
- [j27]Nathan van de Wouw, Dragan Nesic, W. P. M. H. Heemels:
A discrete-time framework for stability analysis of nonlinear networked control systems. Autom. 48(6): 1144-1153 (2012) - [j26]Bart Besselink, Nathan van de Wouw, Henk Nijmeijer:
Model Reduction for a Class of Convergent Nonlinear Systems. IEEE Trans. Autom. Control. 57(4): 1071-1076 (2012) - [j25]Alexey V. Pavlov, Nathan van de Wouw:
Steady-State Analysis and Regulation of Discrete-Time Nonlinear Systems. IEEE Trans. Autom. Control. 57(7): 1793-1798 (2012) - [j24]N. J. M. van Dijk, Nathan van de Wouw, E. J. J. Doppenberg, H. A. J. Oosterling, Henk Nijmeijer:
Robust Active Chatter Control in the High-Speed Milling Process. IEEE Trans. Control. Syst. Technol. 20(4): 901-917 (2012) - [c71]S. J. L. M. van Loon, M. C. F. Donkers, Nathan van de Wouw, W. P. M. H. Heemels:
Stability analysis of networked control systems with periodic protocols and uniform quantizers. ADHS 2012: 186-191 - [c70]J. J. Benjamin Biemond, Nathan van de Wouw, W. P. M. H. Heemels, Henk Nijmeijer:
Tracking control of mechanical systems with impacts. ACC 2012: 258-263 - [c69]B. G. B. Hunnekens, Nathan van de Wouw, Henk Nijmeijer:
Variable gain motion control for transient performance improvement. ACC 2012: 2467-2472 - [c68]T. M. P. Gommans, W. P. M. H. Heemels, Nicolas William Bauer, Nathan van de Wouw:
Compensation-based control for lossy communication networks. ACC 2012: 2854-2859 - [c67]J. J. Bolder, Gert Witvoet, Marco R. de Baar, Nathan van de Wouw, Mark A. M. Haring, Egbert Westerhof, Niek J. Doelman, Maarten Steinbuch:
Robust adaptive control of the sawtooth instability in nuclear fusion. ACC 2012: 5023-5028 - [c66]Nicolas William Bauer, M. C. F. Donkers, Nathan van de Wouw, W. P. M. H. Heemels:
Decentralized static output-feedback control via networked communication. ACC 2012: 5700-5705 - [c65]Romain Postoyan, Nathan van de Wouw, Dragan Nesic, W. P. M. H. Heemels:
Emulation-based tracking solutions for nonlinear networked control systems. CDC 2012: 740-745 - [c64]Nathan van de Wouw, Mark A. M. Haring, Dragan Nesic:
Extremum-seeking control for periodic steady-state response optimization. CDC 2012: 1603-1608 - [c63]Sinan Öncü, Nathan van de Wouw, W. P. M. H. Heemels, Henk Nijmeijer:
String stability of interconnected vehicles under communication constraints. CDC 2012: 2459-2464 - [c62]Björn Sebastian Rüffer, Nathan van de Wouw, Markus Mueller:
From convergent dynamics to incremental stability. CDC 2012: 2958-2963 - [c61]B. G. B. Hunnekens, Mark A. M. Haring, Nathan van de Wouw, Henk Nijmeijer:
Steady-state performance optimization for variable-gain motion control using extremum seeking. CDC 2012: 3796-3801 - [c60]J. J. Benjamin Biemond, Nathan van de Wouw, W. P. M. H. Heemels, Ricardo G. Sanfelice, Henk Nijmeijer:
Tracking control of mechanical systems with a unilateral position constraint inducing dissipative impacts. CDC 2012: 4223-4228 - [c59]Anna Sadowska, Dragan Kostic, Nathan van de Wouw, Henri Huijberts, Henk Nijmeijer:
Distributed formation control of unicycle robots. ICRA 2012: 1564-1569 - 2011
- [j23]Jan H. Richter, W. P. M. H. Heemels, Nathan van de Wouw, Jan Lunze:
Reconfigurable control of piecewise affine systems with actuator and sensor faults: Stability and tracking. Autom. 47(4): 678-691 (2011) - [j22]Anna Sadowska, Thijs H. A. van den Broek, Henri Huijberts, Nathan van de Wouw, Dragan Kostic, Henk Nijmeijer:
A virtual structure approach to formation control of unicycle mobile robots using mutual coupling. Int. J. Control 84(11): 1886-1902 (2011) - [j21]M. C. F. Donkers, Maurice Heemels, Nathan van de Wouw, Laurentiu Hetel:
Stability Analysis of Networked Control Systems Using a Switched Linear Systems Approach. IEEE Trans. Autom. Control. 56(9): 2101-2115 (2011) - [c58]Bart Besselink, Nathan van de Wouw, Henk Nijmeijer:
Model-based analysis and control of axial and torsional stick-slip oscillations in drilling systems. CCA 2011: 495-500 - [c57]Ricardo G. Sanfelice, J. J. Benjamin Biemond, Nathan van de Wouw, W. P. Maurice H. Heemels:
Tracking control for hybrid systems via embedding of known reference trajectories. ACC 2011: 869-874 - [c56]N. J. M. van Dijk, Nathan van de Wouw, Henk Nijmeijer:
Low-order control design for chatter suppression in high-speed milling. CDC/ECC 2011: 663-668 - [c55]J. J. Benjamin Biemond, Nathan van de Wouw, Henk Nijmeijer:
Structural stability of equilibrium sets for a class of discontinuous vector fields. CDC/ECC 2011: 1172-1177 - [c54]Nathan van de Wouw, Remco I. Leine:
Impulsive control of mechanical motion systems with uncertain friction. CDC/ECC 2011: 4176-4182 - [c53]Bart Besselink, Nathan van de Wouw, Henk Nijmeijer:
Model reduction of nonlinear systems with bounded incremental ™2 gain. CDC/ECC 2011: 7170-7175 - [c52]Anna Sadowska, Henri Huijberts, Dragan Kostic, Nathan van de Wouw, Henk Nijmeijer:
Formation control of unicycle robots using the virtual structure approach. ICAR 2011: 365-370 - [c51]Jeroen Ploeg, Bart T. M. Scheepers, Ellen van Nunen, Nathan van de Wouw, Henk Nijmeijer:
Design and experimental evaluation of cooperative adaptive cruise control. ITSC 2011: 260-265 - [c50]Sinan Öncü, Nathan van de Wouw, Henk Nijmeijer:
Cooperative adaptive cruise control: Tradeoffs between control and network specifications. ITSC 2011: 2051-2056 - 2010
- [j20]Rob H. Gielen, Sorin Olaru, Mircea Lazar, W. P. M. H. Heemels, Nathan van de Wouw, Silviu-Iulian Niculescu:
On polytopic inclusions as a modeling framework for systems with time-varying delays. Autom. 46(3): 615-619 (2010) - [j19]Marieke B. G. Cloosterman, Laurentiu Hetel, Nathan van de Wouw, W. P. M. H. Heemels, Jamal Daafouz, Henk Nijmeijer:
Controller synthesis for networked control systems. Autom. 46(10): 1584-1594 (2010) - [j18]W. P. M. H. Heemels, Andrew R. Teel, Nathan van de Wouw, Dragan Nesic:
Networked Control Systems With Communication Constraints: Tradeoffs Between Transmission Intervals, Delays and Performance. IEEE Trans. Autom. Control. 55(8): 1781-1796 (2010) - [c49]Jozef Johannes Cornelis van Schendel, M. C. F. Donkers, W. P. M. H. Heemels, Nathan van de Wouw:
On dropout modelling for stability analysis of networked control systems. ACC 2010: 555-561 - [c48]Nicolas William Bauer, M. C. F. Donkers, W. P. M. H. Heemels, Nathan van de Wouw:
An approach to observer-based decentralized control under periodic protocols. ACC 2010: 2125-2131 - [c47]Niels van Dijk, Nathan van de Wouw, Ed Doppenberg, Han Oosterling, Henk Nijmeijer:
Chatter control in the high-speed milling process using μ-synthesis. ACC 2010: 6121-6126 - [c46]Stefan Lichiardopol, Nathan van de Wouw, Dragan Kostic, Henk Nijmeijer:
Trajectory tracking control for a tele-operation setup with disturbance estimation and compensation. CDC 2010: 1142-1147 - [c45]Dragan Kostic, Sisdarmanto Adinandra, Jurjen Caarls, Nathan van de Wouw, Henk Nijmeijer:
Saturated control of time-varying formations and trajectory tracking for unicycle multi-agent systems. CDC 2010: 4054-4059 - [c44]Nathan van de Wouw, Dragan Nesic, W. P. M. H. Heemels:
Stability analysis for nonlinear Networked Control Systems: A discrete-time approach. CDC 2010: 7557-7563 - [c43]W. P. M. H. Heemels, Nathan van de Wouw, Rob H. Gielen, M. C. F. Donkers, Laurentiu Hetel, Sorin Olaru, Mircea Lazar, Jamal Daafouz, Silviu-Iulian Niculescu:
Comparison of overapproximation methods for stability analysis of networked control systems. HSCC 2010: 181-190 - [c42]Stefan Lichiardopol, Nathan van de Wouw, Henk Nijmeijer:
Bilateral Teleoperation for Force Sensorless 1-DOF Robots. ICINCO (2) 2010: 39-46 - [c41]Stefan Lichiardopol, Nathan van de Wouw, Henk Nijmeijer:
Bilateral Teleoperation for Linear Force Sensorless 3D Robots. ICINCO (Selected Papers) 2010: 197-210 - [c40]Alejandro Alvarez-Aguirre, Nathan van de Wouw, Toshiki Oguchi, Kotaro Kojima, Henk Nijmeijer:
Remote Tracking Control of Unicycle Robots with Network-Induced Delays. ICINCO (Selected Papers) 2010: 225-238
2000 – 2009
- 2009
- [j17]J. C. A. de Bruin, Apostolos Doris, Nathan van de Wouw, W. P. M. H. Heemels, Henk Nijmeijer:
Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities. Autom. 45(2): 405-415 (2009) - [j16]Christophe Germay, Nathan van de Wouw, Henk Nijmeijer, Rodolphe Sepulchre:
Nonlinear Drillstring Dynamics Analysis. SIAM J. Appl. Dyn. Syst. 8(2): 527-553 (2009) - [j15]Marieke B. G. Cloosterman, Nathan van de Wouw, W. P. M. H. Heemels, Henk Nijmeijer:
Stability of Networked Control Systems With Uncertain Time-Varying Delays. IEEE Trans. Autom. Control. 54(7): 1575-1580 (2009) - [c39]Stefan Lichiardopol, Nathan van de Wouw, Henk Nijmeijer:
Control scheme for human-robot co-manipulation of uncertain, time-varying loads. ACC 2009: 1485-1490 - [c38]Bart Besselink, Nathan van de Wouw, Henk Nijmeijer:
An error bound for model reduction of Lur'e-type systems. CDC 2009: 3264-3269 - [c37]Alexey V. Pavlov, Erik Steur, Nathan van de Wouw:
Controlled synchronization via nonlinear integral coupling. CDC 2009: 5263-5268 - [c36]Dragan Kostic, Sisdarmanto Adinandra, Jurjen Caarls, Nathan van de Wouw, Henk Nijmeijer:
Collision-free tracking control of unicycle mobile robots. CDC 2009: 5667-5672 - [c35]Laurentiu Hetel, Marieke B. G. Cloosterman, Nathan van de Wouw, W. P. M. H. Heemels, Jamal Daafouz, Henk Nijmeijer:
Comparison of stability characterisations for networked control systems. CDC 2009: 7911-7916 - [c34]W. P. M. H. Heemels, Dragan Nesic, Andrew R. Teel, Nathan van de Wouw:
Networked and quantized control systems with communication delays. CDC 2009: 7929-7935 - [c33]Thijs H. A. van den Broek, Nathan van de Wouw, Henk Nijmeijer:
Formation control of unicycle mobile robots: a virtual structure approach. CDC 2009: 8328-8333 - [c32]W. P. M. H. Heemels, Andrew R. Teel, Nathan van de Wouw, Dragan Nesic:
Networked control systems with communication constraints: Tradeoffs between transmission intervals and delays. ECC 2009: 4296-4301 - [c31]M. C. F. Donkers, Laurentiu Hetel, W. P. M. H. Heemels, Nathan van de Wouw, Maarten Steinbuch:
Stability Analysis of Networked Control Systems Using a Switched Linear Systems Approach. HSCC 2009: 150-164 - 2008
- [j14]Nathan van de Wouw, H. A. Pastink, Marcel François Heertjes, Alexey V. Pavlov, Henk Nijmeijer:
Performance of convergence-based variable-gain control of optical storage drives. Autom. 44(1): 15-27 (2008) - [j13]Nathan van de Wouw, Alexey V. Pavlov:
Tracking and synchronisation for a class of PWA systems. Autom. 44(11): 2909-2915 (2008) - [j12]Remco I. Leine, Nathan van de Wouw:
Uniform Convergence of Monotone Measure Differential Inclusions: with Application to the Control of Mechanical Systems with Unilateral Constraints. Int. J. Bifurc. Chaos 18(5): 1435-1457 (2008) - [j11]Apostolos Doris, Aleksandar Lj. Juloski, Nenad Mihajlovic, W. P. M. H. Heemels, Nathan van de Wouw, Henk Nijmeijer:
Observer Designs for Experimental Non-Smooth and Discontinuous Systems. IEEE Trans. Control. Syst. Technol. 16(6): 1323-1332 (2008) - [c30]Nathan van de Wouw, Apostolos Doris, J. C. A. de Bruin, W. P. M. H. Heemels, Henk Nijmeijer:
Output-feedback control of Lur'e-type systems with set-valued nonlinearities: A Popov-criterion approach. ACC 2008: 2316-2321 - [c29]Alexey V. Pavlov, Nathan van de Wouw:
Convergent discrete-time nonlinear systems: The case of PWA systems. ACC 2008: 3452-3457 - [c28]Marieke B. G. Cloosterman, Nathan van de Wouw, W. P. Maurice H. Heemels, Henk Nijmeijer:
Stabilization of Networked Control Systems with large delays and packet dropouts. ACC 2008: 4991-4996 - [c27]Jan H. Richter, Maurice Heemels, Nathan van de Wouw, Jan Lunze:
Reconfigurable control of PWA systems with actuator and sensor faults: Stability. CDC 2008: 1060-1065 - [c26]Alexey V. Pavlov, Nathan van de Wouw:
Fast computation of frequency response functions for a class of nonlinear systems. CDC 2008: 1180-1186 - [c25]Nathan van de Wouw, Remco I. Leine:
Tracking control for a class of measure differential inclusions. CDC 2008: 2526-2532 - [c24]Stefan Lichiardopol, Nathan van de Wouw, Henk Nijmeijer:
Boosting human force: A robotic enhancement of a human operator's force. CDC 2008: 4576-4581 - [c23]Maurice Heemels, Mircea Lazar, Nathan van de Wouw, Alexey V. Pavlov:
Observer-based control of discrete-time piecewise affine systems: Exploiting continuity twice. CDC 2008: 4675-4680 - 2007
- [j10]Alexey V. Pavlov, Nathan van de Wouw, Henk Nijmeijer:
Global nonlinear output regulation: Convergence-based controller design. Autom. 43(3): 456-463 (2007) - [j9]Devi Putra, Henk Nijmeijer, Nathan van de Wouw:
Analysis of undercompensation and overcompensation of friction in 1DOF mechanical systems. Autom. 43(8): 1387-1394 (2007) - [j8]Alexey Pavlov, Alexander Yu. Pogromsky, Nathan van de Wouw, Henk Nijmeijer:
On convergence properties of piecewise affine systems. Int. J. Control 80(8): 1233-1247 (2007) - [j7]Alexey V. Pavlov, Nathan van de Wouw, Henk Nijmeijer:
Frequency Response Functions for Nonlinear Convergent Systems. IEEE Trans. Autom. Control. 52(6): 1159-1165 (2007) - [j6]Alexey V. Pavlov, Bart J. Janssen, Nathan van de Wouw, Henk Nijmeijer:
Experimental Output Regulation for a Nonlinear Benchmark System. IEEE Trans. Control. Syst. Technol. 15(4): 786-793 (2007) - [c22]Alexey Pavlov, Nathan van de Wouw, Alexander Yu. Pogromsky, Marcel François Heertjes, Henk Nijmeijer:
Frequency domain performance analysis of nonlinearly controlled motion systems. CDC 2007: 1621-1627 - [c21]Nathan van de Wouw, Payam Naghshtabrizi, Marieke B. G. Cloosterman, João Pedro Hespanha:
Tracking control for networked control systems. CDC 2007: 4441-4446 - [c20]Marieke B. G. Cloosterman, Nathan van de Wouw, W. P. M. H. Heemels, Henk Nijmeijer:
Stability of networked control systems with large delays. CDC 2007: 5017-5022 - [c19]M. Kanat Camlibel, Nathan van de Wouw:
On the convergence of linear passive complementarity systems. CDC 2007: 5886-5891 - [c18]Aksel Andreas Transeth, Nathan van de Wouw, Alexey V. Pavlov, João Pedro Hespanha, Kristin Ytterstad Pettersen:
Tracking control for snake robot joints. IROS 2007: 3539-3546 - [c17]J. C. A. de Bruin, Apostolos Doris, Nathan van de Wouw, Henk Nijmeijer:
Experimental results on output-feedback control of a nonsmooth rotor dynamic system. PSYCO 2007: 44-48 - 2006
- [j5]Niels Mallon, Nathan van de Wouw, Devi Putra, Henk Nijmeijer:
Friction compensation in a controlled one-link robot using a reduced-order observer. IEEE Trans. Control. Syst. Technol. 14(2): 374-383 (2006) - [j4]Marcel François Heertjes, Erik Pastink, Nathan van de Wouw, Henk Nijmeijer:
Experimental frequency-domain analysis of nonlinear controlled optical storage drives. IEEE Trans. Control. Syst. Technol. 14(3): 389-397 (2006) - [c16]Björn Bukkems, René van de Molengraft, Maurice Heemels, Nathan van de Wouw, Maarten Steinbuch:
A piecewise linear approach towards sheet control in a printer paper path. ACC 2006 - [c15]Marcel Heertjes, Nathan van de Wouw, Erik Pastink, Alexey Pavlov, Henk Nijmeijer, Maarten Steinbuch:
Performance of variable-gain controlled optical storage drives. ACC 2006: 1-6 - [c14]Aleksandar Lj. Juloski, Nenad Mihajlovic, Maurice Heemels, Nathan van de Wouw, Henk Nijmeijer:
Observer design for an experimental rotor system with discontinuous friction. ACC 2006: 1-6 - [c13]Nathan van de Wouw, Alexey V. Pavlov, Kristin Ytterstad Pettersen, Henk Nijmeijer:
Output Tracking Control of PWA Systems. CDC 2006: 2637-2642 - [c12]Marcel Heertjes, Nathan van de Wouw:
Variable Control Design and its Application to Wafer Scanners. CDC 2006: 3724-3729 - [c11]Alexey V. Pavlov, Nathan van de Wouw, Henk Nijmeijer:
Frequency response functions and Bode plots for nonlinear convergent systems. CDC 2006: 3765-3770 - [c10]Nathan van de Wouw, Remco I. Leine:
Stability of Stationary Sets in Nonlinear Systems with Set-valued Friction. CDC 2006: 4271-4276 - [c9]Marieke B. G. Cloosterman, Nathan van de Wouw, Maurice Heemels, Henk Nijmeijer:
Robust Stability of Networked Control Systems with Time-varying Network-induced Delays. CDC 2006: 4980-4985 - 2005
- [j3]Nathan van de Wouw, M. N. van den Heuvel, Henk Nijmeijer, J. A. van Rooij:
Performance of an Automatic Ball Balancer with dry Friction. Int. J. Bifurc. Chaos 15(1): 65-82 (2005) - [c8]Alexey V. Pavlov, Bart J. Janssen, Nathan van de Wouw, Henk Nijmeijer:
Experimental output regulation for the TORA system. CDC/ECC 2005: 1108-1113 - [c7]Nathan van de Wouw, Remco I. Leine, Henk Nijmeijer:
Controlling Attractivity of Friction-Induced Equilibrium Sets. CDC/ECC 2005: 2610-2615 - [c6]Alexey V. Pavlov, Nathan van de Wouw, Henk Nijmeijer:
Convergent piecewise affine systems: analysis and design Part I: continuous case. CDC/ECC 2005: 5391-5396 - [c5]Alexey Pavlov, Alexander Yu. Pogromsky, Nathan van de Wouw, Henk Nijmeijer, Koos Rooda:
Convergent piecewise affine systems: analysis and design Part II: discontinuous case. CDC/ECC 2005: 5397-5402 - 2004
- [j2]Alexey Pavlov, Alexander Yu. Pogromsky, Nathan van de Wouw, Henk Nijmeijer:
Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst. Control. Lett. 52(3-4): 257-261 (2004) - [j1]Alexey V. Pavlov, Nathan van de Wouw, Henk Nijmeijer:
The local output regulation problem: convergence region estimates. IEEE Trans. Autom. Control. 49(5): 814-819 (2004) - [c4]Alexey Pavlov, Nathan van de Wouw, Henk Nijmeijer:
Global robust output regulation for Lur'e systems. CDC 2004: 4565-4570 - [c3]Alexey Pavlov, Nathan van de Wouw, Henk Nijmeijer:
The uniform global output regulation problem. CDC 2004: 4921-4926 - 2003
- [c2]Alexey V. Pavlov, Nathan van de Wouw, Henk Nijmeijer:
The local output regulation problem: Convergence region estimates. ECC 2003: 725-730 - 2002
- [c1]Alexey Pavlov, Nathan van de Wouw, Henk Nijmeijer:
Convergent systems and the output regulation problem. CDC 2002: 2681-2686
Coauthor Index
aka: Marcel Heertjes
aka: Bram Hunnekens
aka: Hendrik Nijmeijer
aka: Alexey V. Pavlov
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 21:41 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint