default search action
Matthew M. Peet
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j26]Yulia T. Peet, Matthew M. Peet:
A new treatment of boundary conditions in PDE solution with Galerkin methods via Partial Integral Equation framework. J. Comput. Appl. Math. 442: 115673 (2024) - [j25]Aleksandr Talitckii, Brendon K. Colbert, Matthew M. Peet:
Efficient Convex Algorithms for Universal Kernel Learning. J. Mach. Learn. Res. 25: 203:1-203:40 (2024) - [j24]Aleksandr Talitckii, Joslyn L. Mangal, Brendon K. Colbert, Abhinav P. Acharya, Matthew M. Peet:
Employing Feature Selection Algorithms to Determine the Immune State of a Mouse Model of Rheumatoid Arthritis. IEEE J. Biomed. Health Informatics 28(4): 1906-1916 (2024) - [i19]Declan S. Jagt, Matthew M. Peet:
H∞-Optimal Estimator Synthesis for Coupled Linear 2D PDEs using Convex Optimization. CoRR abs/2402.05061 (2024) - 2023
- [j23]Lucas L. Fernandes, Morgan Jones, Luís F. C. Alberto, Matthew M. Peet, Daniel Dotta:
Combining Trajectory Data With Analytical Lyapunov Functions for Improved Region of Attraction Estimation. IEEE Control. Syst. Lett. 7: 271-276 (2023) - [j22]Declan S. Jagt, Matthew M. Peet:
Representation of PDE Systems With Delay and Stability Analysis Using Convex Optimization. IEEE Control. Syst. Lett. 7: 3627-3632 (2023) - [c56]Aleksandr Talitckii, Matthew M. Peet, Peter Seiler:
Integral Quadratic Constraints with Infinite-Dimensional Channels. ACC 2023: 1576-1583 - [c55]Sachin Shivakumar, Amritam Das, Matthew M. Peet:
Representation of linear PDEs with spatial integral terms as Partial Integral Equations. ACC 2023: 1788-1793 - [c54]Morgan Jones, Matthew M. Peet:
Existence of Partially Quadratic Lyapunov Functions That Can Certify The Local Asymptotic Stability of Nonlinear Systems. ACC 2023: 4130-4135 - [c53]Declan Jagt, Peter J. Seiler, Matthew M. Peet:
A PIE Representation of Scalar Quadratic PDEs and Global Stability Analysis Using SDP. CDC 2023: 2950-2957 - [i18]Aleksandr Talitckii, Brendon K. Colbert, Matthew M. Peet:
Efficient Convex Algorithms for Universal Kernel Learning. CoRR abs/2304.07472 (2023) - [i17]Declan S. Jagt, Matthew M. Peet:
Constructive Representation of Functions in N-Dimensional Sobolev Space. CoRR abs/2312.00028 (2023) - 2022
- [j21]Declan Jagt, Sachin Shivakumar, Peter Seiler, Matthew M. Peet:
Efficient Data Structures for Representation of Polynomial Optimization Problems: Implementation in SOSTOOLS. IEEE Control. Syst. Lett. 6: 3493-3498 (2022) - [c52]Declan S. Jagt, Matthew M. Peet:
A PIE Representation of Coupled Linear 2D PDEs and Stability Analysis using LPIs. ACC 2022: 1659-1666 - [c51]Declan S. Jagt, Matthew M. Peet:
L2-Gain Analysis of Coupled Linear 2D PDEs using Linear PI Inequalities. CDC 2022: 6097-6104 - [i16]Declan Jagt, Sachin Shivakumar, Peter Seiler, Matthew M. Peet:
Efficient Data Structures for Exploiting Sparsity and Structure in Representation of Polynomial Optimization Problems: Implementation in SOSTOOLS. CoRR abs/2203.01910 (2022) - [i15]Declan S. Jagt, Matthew M. Peet:
L2-Gain Analysis of Coupled Linear 2D PDEs using Linear PI Inequalities. CoRR abs/2203.15257 (2022) - [i14]Sachin Shivakumar, Matthew M. Peet:
Computational stability analysis of PDEs with integral terms using the PIE framework. CoRR abs/2204.00186 (2022) - [i13]Brendon K. Colbert, Joslyn L. Mangal, Aleksandr Talitckii, Abhinav P. Acharya, Matthew M. Peet:
Employing Feature Selection Algorithms to Determine the Immune State of Mice with Rheumatoid Arthritis. CoRR abs/2207.05882 (2022) - [i12]Sachin Shivakumar, Amritam Das, Matthew M. Peet:
Representation of linear PDEs with spatial integral terms as Partial Integral Equations. CoRR abs/2212.08119 (2022) - 2021
- [j20]Matthew M. Peet:
A Partial Integral Equation (PIE) representation of coupled linear PDEs and scalable stability analysis using LMIs. Autom. 125: 109473 (2021) - [j19]Matthew M. Peet:
Representation of networks and systems with delay: DDEs, DDFs, ODE-PDEs and PIEs. Autom. 127: 109508 (2021) - [j18]Morgan Jones, Matthew M. Peet:
A generalization of Bellman's equation with application to path planning, obstacle avoidance and invariant set estimation. Autom. 127: 109510 (2021) - [j17]Matthew M. Peet:
Minimal Differential Difference Realizations of Delay Differential, Differential Difference, and Neutral Delay Systems. IEEE Control. Syst. Lett. 5(4): 1471-1476 (2021) - [j16]Morgan Jones, Matthew M. Peet:
Extensions of the Dynamic Programming Framework: Battery Scheduling, Demand Charges, and Renewable Integration. IEEE Trans. Autom. Control. 66(4): 1602-1617 (2021) - [c50]Matthew M. Peet:
Minimal Differential Difference Realizations of Delay Differential, Differential Difference, and Neutral Delay Systems. ACC 2021: 4051-4056 - [c49]Morgan Jones, Matthew M. Peet:
Converse Lyapunov Functions and Converging Inner Approximations to Maximal Regions of Attraction of Nonlinear Systems. CDC 2021: 5312-5319 - 2020
- [j15]Hosain Bagheri, Anna Hu, Sheldon Cummings, Cayla Roy, Rachel Casleton, Ashley Wan, Nicole Erjavic, Spring Berman, Matthew M. Peet, Daniel M. Aukes, Ximin He, Stephen C. Pratt, Rebecca E. Fisher, Hamid Marvi:
New Insights on the Control and Function of Octopus Suckers. Adv. Intell. Syst. 2(6): 1900154 (2020) - [j14]Brendon K. Colbert, Matthew M. Peet:
A Convex Parametrization of a New Class of Universal Kernel Functions. J. Mach. Learn. Res. 21: 45:1-45:29 (2020) - [j13]Amir Salimi Lafmejani, Azadeh Doroudchi, Hamed Farivarnejad, Ximin He, Daniel Aukes, Matthew M. Peet, Hamidreza Marvi, Rebecca E. Fisher, Spring Berman:
Kinematic Modeling and Trajectory Tracking Control of an Octopus-Inspired Hyper-Redundant Robot. IEEE Robotics Autom. Lett. 5(2): 3460-3467 (2020) - [j12]Matthew M. Peet:
A Convex Solution of the H∞-Optimal Controller Synthesis Problem for Multidelay Systems. SIAM J. Control. Optim. 58(3): 1547-1578 (2020) - [c48]Sachin Shivakumar, Amritam Das, Matthew M. Peet:
PIETOOLS: A Matlab Toolbox for Manipulation and Optimization of Partial Integral Operators. ACC 2020: 2667-2672 - [c47]Brendon K. Colbert, Luis G. Crespo, Matthew M. Peet:
A Convex Optimization Approach to Improving Suboptimal Hyperparameters of Sliced Normal Distributions. ACC 2020: 4478-4483 - [c46]Amritam Das, Sachin Shivakumar, Matthew M. Peet, Siep Weiland:
Robust Analysis of Uncertain ODE-PDE Systems Using PI Multipliers, PIEs and LPIs. CDC 2020: 634-639 - [c45]Sachin Shivakumar, Amritam Das, Siep Weiland, Matthew M. Peet:
Duality and H∞-Optimal Control Of Coupled ODE-PDE Systems. CDC 2020: 5689-5696 - [i11]Brendon K. Colbert, Matthew M. Peet:
A New Algorithm for Tessellated Kernel Learning. CoRR abs/2006.07693 (2020) - [i10]Morgan Jones, Matthew M. Peet:
Polynomial Approximation of Value Functions and Nonlinear Controller Design with Performance Bounds. CoRR abs/2010.06828 (2020) - [i9]Yulia T. Peet, Matthew M. Peet:
A New Treatment of Boundary Conditions in PDE Solutions with Galerkin Methods via Partial Integral Equation Framework. CoRR abs/2012.00163 (2020)
2010 – 2019
- 2019
- [j11]Matthew M. Peet:
A Dual to Lyapunov's Second Method for Linear Systems With Multiple Delays and Implementation Using SOS. IEEE Trans. Autom. Control. 64(3): 944-959 (2019) - [c44]Sachin Shivakumar, Matthew M. Peet:
Computing Input-Ouput Properties of Coupled Linear PDE systems. ACC 2019: 606-613 - [c43]Morgan Jones, Matthew M. Peet:
Using SOS for Optimal Semialgebraic Representation of Sets: Finding Minimal Representations of Limit Cycles, Chaotic Attractors and Unions. ACC 2019: 2084-2091 - [c42]Matthew M. Peet, Keqin Gu:
SOS for Systems with Multiple Delays: Part 1. H∞-Optimal Control. ACC 2019: 3849-3856 - [c41]Matthew M. Peet, Keqin Gu:
SOS for Systems with Multiple Delays: Part 2. H∞-Optimal Estimation. ACC 2019: 3870-3876 - [c40]Brendon K. Colbert, Luis G. Crespo, Matthew M. Peet:
A Sum of Squares Optimization Approach to Uncertainty Quantification. ACC 2019: 5378-5384 - [c39]Amritam Das, Sachin Shivakumar, Siep Weiland, Matthew M. Peet:
ℋ∞ Optimal Estimation for Linear Coupled PDE Systems. CDC 2019: 262-267 - [c38]Sachin Shivakumar, Amritam Das, Siep Weiland, Matthew M. Peet:
A Generalized LMI Formulation for Input-Output Analysis of Linear Systems of ODEs Coupled with PDEs. CDC 2019: 280-285 - [c37]Shuangshuang Wu, Matthew M. Peet, Changchun Hua:
Estimator-Based Output-Feedback Stabilization of Linear Multi-Delay Systems using SOS. CDC 2019: 983-988 - [c36]Morgan Jones, Matthew M. Peet:
Relaxing The Hamilton Jacobi Bellman Equation To Construct Inner And Outer Bounds On Reachable Sets. CDC 2019: 2397-2404 - [c35]Brendon K. Colbert, Matthew M. Peet:
Using SDP to Parameterize Universal Kernel Functions. CDC 2019: 4622-4629 - 2018
- [c34]Brendon K. Colbert, Hesameddin Mohammadi, Matthew M. Peet:
Combining SOS with Branch and Bound to Isolate Global Solutions of Polynomial Optimization Problems. ACC 2018: 2190-2197 - [c33]Matthew M. Peet:
A Convex Reformulation of the Controller Synthesis Problem for Infinite-Dimensional Systems using Linear Operator Inequalities (LOIs) with Application to MIMO Multi-Delay Systems. ACC 2018: 3322-3329 - [c32]Matthew M. Peet:
A New State-Space Representation for Coupled PDEs and Scalable Lyapunov Stability Analysis in the SOS Framework. CDC 2018: 545-550 - [c31]Brendon K. Colbert, Matthew M. Peet:
Using Trajectory Measurements to Estimate the Region of Attraction of Nonlinear Systems. CDC 2018: 2341-2347 - [c30]Azadeh Doroudchi, Sachin Shivakumar, Rebecca E. Fisher, Hamid Marvi, Daniel Aukes, Ximin He, Spring Berman, Matthew M. Peet:
Decentralized Control of Distributed Actuation in a Segmented Soft Robot Arm. CDC 2018: 7002-7009 - [i8]Matthew M. Peet:
A New State-Space Representation of Lyapunov Stability for Coupled PDEs and Scalable Stability Analysis in the SOS Framework - with Lemma Proofs. CoRR abs/1803.07290 (2018) - [i7]Matthew M. Peet:
A Convex Formulation of the H∞-Optimal Controller Synthesis Problem for Multi-Delay Systems. CoRR abs/1806.08071 (2018) - 2017
- [j10]Aditya Gahlawat, Matthew M. Peet:
A Convex Sum-of-Squares Approach to Analysis, State Feedback and Output Feedback Control of Parabolic PDEs. IEEE Trans. Autom. Control. 62(4): 1636-1651 (2017) - [c29]Matthew M. Peet:
A convex reformulation of the controller synthesis problem for MIMO single-delay systems with implementation in SOS. ACC 2017: 5127-5134 - [c28]Morgan Jones, Matthew M. Peet:
Solving dynamic programming with supremum terms in the objective and application to optimal battery scheduling for electricity consumers subject to demand charges. CDC 2017: 1323-1329 - [c27]Morgan Jones, Hesameddin Mohammadi, Matthew M. Peet:
Estimating the region of attraction using polynomial optimization: A converse Lyapunov result. CDC 2017: 1796-1802 - [i6]Guoying Miao, Matthew M. Peet, Keqin Gu:
Inversion of Separable Kernel Operators in Coupled Differential-Functional Equations and Application to Controller Synthesis. CoRR abs/1703.10253 (2017) - [i5]Brendon K. Colbert, Matthew M. Peet:
A Convex Parametrization of a New Class of Universal Kernel Functions for use in Kernel Learning. CoRR abs/1711.05477 (2017) - 2016
- [c26]Aditya Gahlawat, Matthew M. Peet:
Optimal state feedback boundary control of parabolic PDEs using SOS polynomials. ACC 2016: 4350-4355 - [c25]Reza Kamyar, Matthew M. Peet:
Multi-objective dynamic programming for constrained optimization of non-separable objective functions with application in energy storage. CDC 2016: 5348-5353 - [i4]Evgeny Meyer, Matthew M. Peet:
A Convex Approach for Stability Analysis of Coupled PDEs with Spatially Dependent Coefficients. CoRR abs/1603.07783 (2016) - 2015
- [c24]Reza Kamyar, Matthew M. Peet:
Optimal thermostat programming and optimal electricity rates for customers with demand charges. ACC 2015: 4529-4535 - [c23]Aditya Gahlawat, Matthew M. Peet:
Output feedback control of inhomogeneous parabolic PDEs with point actuation and point measurement using SOS and semi-separable kernels. CDC 2015: 1217-1223 - [c22]Evgeny Meyer, Matthew M. Peet:
Stability analysis of parabolic linear PDEs with two spatial dimensions using Lyapunov method and SOS. CDC 2015: 1884-1890 - [i3]Aditya Gahlawat, Matthew M. Peet:
Output Feedback Control of Inhomogeneous Parabolic PDEs with Point Actuation and Point Measurement using SOS and Semi-Separable Kernels. CoRR abs/1503.06982 (2015) - [i2]Aditya Gahlawat, Matthew M. Peet:
A Convex Approach to Analysis, State and Output Feedback Control Parabolic PDEs Using Sum-of-Squares. CoRR abs/1507.05888 (2015) - 2014
- [c21]Matthew M. Peet:
LMI parametrization of Lyapunov functions for infinite-dimensional systems: A framework. ACC 2014: 359-366 - [c20]Reza Kamyar, Chaitanya Murti, Matthew M. Peet:
Constructing piecewise-polynomial lyapunov functions for local stability of nonlinear systems using Handelman's theorem. CDC 2014: 5481-5487 - [i1]Aditya Gahlawat, Matthew M. Peet:
A Convex Approach to Output Feedback Control of Parabolic PDEs Using Sum-of-Squares. CoRR abs/1408.5206 (2014) - 2013
- [j9]Alexandre Seuret, Matthew M. Peet:
Stability Analysis of Sampled-Data Systems Using Sum of Squares. IEEE Trans. Autom. Control. 58(6): 1620-1625 (2013) - [j8]Reza Kamyar, Matthew M. Peet, Yulia T. Peet:
Solving Large-Scale Robust Stability Problems by Exploiting the Parallel Structure of Polya's Theorem. IEEE Trans. Autom. Control. 58(8): 1931-1947 (2013) - [c19]Reza Kamyar, Matthew M. Peet:
Decentralized Polya's algorithm for stability analysis of large-scale nonlinear systems. CDC 2013: 5858-5863 - [c18]Chaitanya Murti, Matthew M. Peet:
A sum-of-squares approach to the analysis of Zeno stability in polynomial hybrid systems. ECC 2013: 1657-1662 - [c17]Matthew M. Peet:
Full-State Feedback of Delayed Systems Using SOS: A New Theory of Duality. TDS 2013: 24-29 - 2012
- [j7]Matthew M. Peet, Antonis Papachristodoulou:
A Converse Sum of Squares Lyapunov Result With a Degree Bound. IEEE Trans. Autom. Control. 57(9): 2281-2293 (2012) - [c16]Reza Kamyar, Matthew M. Peet:
Decentralized computation for robust stability analysis of large state-space systems using Polya's theorem. ACC 2012: 5948-5954 - [c15]Aditya Gahlawat, Emmanuel Witrant, Matthew M. Peet, Mazen Alamir:
Bootstrap current optimization in Tokamaks using sum-of-squares polynomials. CDC 2012: 4359-4365 - [c14]Reza Kamyar, Matthew M. Peet:
Decentralized computation for robust stability of large-scale systems with parameters on the hypercube. CDC 2012: 6259-6264 - 2011
- [j6]Matthew M. Peet, Pierre-Alexandre Bliman:
On the conservatism of the sum-of-squares method for analysis of time-delayed systems. Autom. 47(11): 2406-2411 (2011) - [j5]Yashun Zhang, Matthew M. Peet, Keqin Gu:
Reducing the Complexity of the Sum-of-Squares Test for Stability of Delayed Linear Systems. IEEE Trans. Autom. Control. 56(1): 229-234 (2011) - [c13]Matthew M. Peet, Peter S. Kim, Peter P. Lee:
Biological circuit models of immune regulatory response: A decentralized control system. CDC/ECC 2011: 3020-3025 - [c12]Aditya Gahlawat, Matthew M. Peet:
Designing observer-based controllers for PDE systems: A heat-conducting rod with point observation and boundary control. CDC/ECC 2011: 6985-6990 - 2010
- [c11]Matthew M. Peet, Yulia V. Peet:
A parallel-computing solution for optimization of polynomials. ACC 2010: 4851-4856 - [c10]Yashun Zhang, Matthew M. Peet, Keqin Gu:
Reducing the computational cost of the sum-of-squares stability test for time-delayed systems. ACC 2010: 5018-5023 - [c9]Matthew M. Peet, Antonis Papachristodoulou:
A converse sum-of-squares Lyapunov result: An existence proof based on the Picard iteration. CDC 2010: 5949-5954
2000 – 2009
- 2009
- [j4]Matthew M. Peet, Antonis Papachristodoulou, Sanjay Lall:
Positive Forms and Stability of Linear Time-Delay Systems. SIAM J. Control. Optim. 47(6): 3237-3258 (2009) - [j3]Matthew M. Peet:
Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions. IEEE Trans. Autom. Control. 54(5): 979-987 (2009) - [j2]Antonis Papachristodoulou, Matthew M. Peet, Sanjay Lall:
Analysis of Polynomial Systems With Time Delays via the Sum of Squares Decomposition. IEEE Trans. Autom. Control. 54(5): 1058-1064 (2009) - [c8]Matthew M. Peet:
A generalized chain rule and a bound on the continuity of solutions and converse Lyapunov functions. CDC 2009: 3155-3161 - 2008
- [c7]Matthew M. Peet, Antonis Papachristodoulou:
Using polynomial semi-separable kernels to construct infinite-dimensional Lyapunov functions. CDC 2008: 847-852 - 2007
- [j1]Matthew M. Peet, Sanjay Lall:
Global Stability Analysis of a Nonlinear Model of Internet Congestion Control With Delay. IEEE Trans. Autom. Control. 52(3): 553-559 (2007) - [c6]Antonis Papachristodoulou, Matthew M. Peet, Silviu-Iulian Niculescu:
Stability analysis of linear systems with time-varying delays: Delay uncertainty and quenching. CDC 2007: 2117-2122 - [c5]Matthew M. Peet, Antonis Papachristodoulou:
Positivity of kernel functions for systems with communication delay. CDC 2007: 2815-2820 - 2006
- [c4]Matthew M. Peet, Antonis Papachristodoulou, Sanjay Lall:
Positive Forms and Stability of Linear Time-Delay Systems. CDC 2006: 187-193 - [c3]Antonis Papachristodoulou, Matthew Monnig Peet:
On the Analysis of Systems Described by Classes of Partial Differential Equations. CDC 2006: 747-752 - 2005
- [c2]Antonis Papachristodoulou, Matthew M. Peet, Sanjay Lall:
Constructing Lyapunov-Krasovskii functionals for linear time delay systems. ACC 2005: 2845-2850 - 2004
- [c1]Matthew M. Peet, Sanjay Lall:
On global stability of Internet congestion control. CDC 2004: 1035-1041
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint