default search action
Chih-Jen Lin
Person information
- affiliation: National Taiwan University, Taipei, Taiwan
Other persons with a similar name
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c67]Sheng-Wei Chen, Chih-Jen Lin:
Random Label Forests: An Ensemble Method with Label Subsampling For Extreme Multi-Label Problems. EMNLP (Findings) 2024: 14107-14119 - [c66]He-Zhe Lin, Cheng-Hung Liu, Chih-Jen Lin:
Exploring Space Efficiency in a Tree-based Linear Model for Extreme Multi-label Classification. EMNLP 2024: 16245-16260 - [c65]Sheng-Wei Chen, Chih-Jen Lin:
One-class Matrix Factorization: Point-Wise Regression-Based or Pair-Wise Ranking-Based? RecSys 2024: 257-266 - [i9]Yu-Hsueh Fang, He-Zhe Lin, Jie-Jyun Liu, Chih-Jen Lin:
A Step-by-step Introduction to the Implementation of Automatic Differentiation. CoRR abs/2402.16020 (2024) - [i8]He-Zhe Lin, Cheng-Hung Liu, Chih-Jen Lin:
Exploring space efficiency in a tree-based linear model for extreme multi-label classification. CoRR abs/2410.09554 (2024) - 2023
- [c64]Yu-Chen Lin, Si-An Chen, Jie-Jyun Liu, Chih-Jen Lin:
Linear Classifier: An Often-Forgotten Baseline for Text Classification. ACL (2) 2023: 1876-1888 - [c63]Yu-Jen Lin, Chih-Jen Lin:
On the Thresholding Strategy for Infrequent Labels in Multi-label Classification. CIKM 2023: 1441-1450 - [c62]Chih-Jen Lin:
On the "Rough Use" of Machine Learning Techniques. SIGIR 2023: 2 - [i7]Thanh-Tung Nguyen, Viktor Schlegel, Abhinav Ramesh Kashyap, Stefan Winkler, Shao-Syuan Huang, Jie-Jyun Liu, Chih-Jen Lin:
Mimic-IV-ICD: A new benchmark for eXtreme MultiLabel Classification. CoRR abs/2304.13998 (2023) - [i6]Yu-Chen Lin, Si-An Chen, Jie-Jyun Liu, Chih-Jen Lin:
Linear Classifier: An Often-Forgotten Baseline for Text Classification. CoRR abs/2306.07111 (2023) - 2022
- [j66]Ching-Pei Lee, Po-Wei Wang, Chih-Jen Lin:
Limited-memory common-directions method for large-scale optimization: convergence, parallelization, and distributed optimization. Math. Program. Comput. 14(3): 543-591 (2022) - [j65]Leonardo Galli, Chih-Jen Lin:
A Study on Truncated Newton Methods for Linear Classification. IEEE Trans. Neural Networks Learn. Syst. 33(7): 2828-2841 (2022) - [c61]Li-Chung Lin, Cheng-Hung Liu, Chih-Ming Chen, Kai-Chin Hsu, I-Feng Wu, Ming-Feng Tsai, Chih-Jen Lin:
On the Use of Unrealistic Predictions in Hundreds of Papers Evaluating Graph Representations. AAAI 2022: 7479-7487 - [c60]Yaxu Liu, Jui-Nan Yen, Bo-Wen Yuan, Rundong Shi, Peng Yan, Chih-Jen Lin:
Practical Counterfactual Policy Learning for Top-K Recommendations. KDD 2022: 1141-1151 - [c59]Si-An Chen, Jie-Jyun Liu, Tsung-Han Yang, Hsuan-Tien Lin, Chih-Jen Lin:
Even the Simplest Baseline Needs Careful Re-investigation: A Case Study on XML-CNN. NAACL-HLT 2022: 1987-2000 - 2021
- [j64]Giulio Galvan, Matteo Lapucci, Chih-Jen Lin, Marco Sciandrone:
A Two-Level Decomposition Framework Exploiting First and Second Order Information for SVM Training Problems. J. Mach. Learn. Res. 22: 23:1-23:38 (2021) - [c58]Jie-Jyun Liu, Tsung-Han Yang, Si-An Chen, Chih-Jen Lin:
Parameter Selection: Why We Should Pay More Attention to It. ACL/IJCNLP (2) 2021: 825-830 - [c57]Jui-Nan Yen, Chih-Jen Lin:
Limited-memory Common-directions Method With Subsampled Newton Directions for Large-scale Linear Classification. ICDM 2021: 1457-1462 - [c56]Bo-Wen Yuan, Yu-Sheng Li, Pengrui Quan, Chih-Jen Lin:
Efficient Optimization Methods for Extreme Similarity Learning with Nonlinear Embeddings. KDD 2021: 2093-2103 - [i5]Jie-Jyun Liu, Tsung-Han Yang, Si-An Chen, Chih-Jen Lin:
Parameter Selection: Why We Should Pay More Attention to It. CoRR abs/2107.05393 (2021) - [i4]Li-Chung Lin, Cheng-Hung Liu, Chih-Ming Chen, Kai-Chin Hsu, I-Feng Wu, Ming-Feng Tsai, Chih-Jen Lin:
On the Use of Unrealistic Predictions in Hundreds of Papers Evaluating Graph Representations. CoRR abs/2112.04274 (2021) - 2020
- [j63]Chien-Chih Wang, Kent Loong Tan, Chih-Jen Lin:
Newton Methods for Convolutional Neural Networks. ACM Trans. Intell. Syst. Technol. 11(2): 19:1-19:30 (2020) - [j62]Hui Xiong, Chih-Jen Lin:
Introduction to the Special Issue on the Best Papers from KDD 2018. ACM Trans. Knowl. Discov. Data 14(5): 51e:1-51e:2 (2020) - [j61]Jui-Yang Hsia, Chih-Jen Lin:
Parameter Selection for Linear Support Vector Regression. IEEE Trans. Neural Networks Learn. Syst. 31(12): 5639-5644 (2020) - [c55]Chih-Yao Chang, Xing Tang, Bo-Wen Yuan, Jui-Yang Hsia, Zhirong Liu, Zhenhua Dong, Xiuqiang He, Chih-Jen Lin:
AutoConjunction: Adaptive Model-based Feature Conjunction for CTR Prediction. MDM 2020: 202-209 - [c54]Bo-Wen Yuan, Yaxu Liu, Jui-Yang Hsia, Zhenhua Dong, Chih-Jen Lin:
Unbiased Ad Click Prediction for Position-aware Advertising Systems. RecSys 2020: 368-377 - [c53]Chi-Cheng Chiu, Pin-Yen Lin, Chih-Jen Lin:
Two-variable Dual Coordinate Descent Methods for Linear SVM with/without the Bias Term. SDM 2020: 163-171 - [c52]Hung-Yi Chou, Pin-Yen Lin, Chih-Jen Lin:
Dual Coordinate-Descent Methods for Linear One-Class SVM and SVDD. SDM 2020: 181-189 - [i3]Bo-Wen Yuan, Yu-Sheng Li, Pengrui Quan, Chih-Jen Lin:
An Efficient Newton Method for Extreme Similarity Learning with Nonlinear Embeddings. CoRR abs/2010.13511 (2020)
2010 – 2019
- 2019
- [j60]Po-Wei Wang, Ching-Pei Lee, Chih-Jen Lin:
The Common-directions Method for Regularized Empirical Risk Minimization. J. Mach. Learn. Res. 20: 58:1-58:49 (2019) - [c51]Bo-Wen Yuan, Jui-Yang Hsia, Mengyuan Yang, Hong Zhu, Chih-Yao Chang, Zhenhua Dong, Chih-Jen Lin:
Improving Ad Click Prediction by Considering Non-displayed Events. CIKM 2019: 329-338 - 2018
- [j59]Chien-Chih Wang, Kent Loong Tan, Chun-Ting Chen, Yu-Hsiang Lin, S. Sathiya Keerthi, Dhruv Mahajan, S. Sundararajan, Chih-Jen Lin:
Distributed Newton Methods for Deep Neural Networks. Neural Comput. 30(6) (2018) - [j58]Wei-Sheng Chin, Bo-Wen Yuan, Mengyuan Yang, Chih-Jen Lin:
An Efficient Alternating Newton Method for Learning Factorization Machines. ACM Trans. Intell. Syst. Technol. 9(6): 72:1-72:31 (2018) - [c50]Chih-Yang Hsia, Wei-Lin Chiang, Chih-Jen Lin:
Preconditioned Conjugate Gradient Methods in Truncated Newton Frameworks for Large-scale Linear Classification. ACML 2018: 312-326 - [c49]Yong Zhuang, Yu-Chin Juan, Guo-Xun Yuan, Chih-Jen Lin:
Naive Parallelization of Coordinate Descent Methods and an Application on Multi-core L1-regularized Classification. CIKM 2018: 1103-1112 - [c48]Wei-Lin Chiang, Yu-Sheng Li, Ching-Pei Lee, Chih-Jen Lin:
Limited-memory Common-directions Method for Distributed Ll-regularized Linear Classification. SDM 2018: 504-512 - [i2]Chien-Chih Wang, Kent Loong Tan, Chun-Ting Chen, Yu-Hsiang Lin, S. Sathiya Keerthi, Dhruv Mahajan, S. Sundararajan, Chih-Jen Lin:
Distributed Newton Methods for Deep Neural Networks. CoRR abs/1802.00130 (2018) - [i1]Chien-Chih Wang, Kent Loong Tan, Chih-Jen Lin:
Newton Methods for Convolutional Neural Networks. CoRR abs/1811.06100 (2018) - 2017
- [c47]Hsiang-Fu Yu, Hsin-Yuan Huang, Inderjit S. Dhillon, Chih-Jen Lin:
A Unified Algorithm for One-Cass Structured Matrix Factorization with Side Information. AAAI 2017: 2845-2851 - [c46]Chih-Yang Hsia, Ya Zhu, Chih-Jen Lin:
A Study on Trust Region Update Rules in Newton Methods for Large-scale Linear Classification. ACML 2017: 33-48 - [c45]Hsiang-Fu Yu, Mikhail Bilenko, Chih-Jen Lin:
Selection of Negative Samples for One-class Matrix Factorization. SDM 2017: 363-371 - [c44]Ching-Pei Lee, Po-Wei Wang, Weizhu Chen, Chih-Jen Lin:
Limited-memory Common-directions Method for Distributed Optimization and its Application on Empirical Risk Minimization. SDM 2017: 732-740 - 2016
- [j57]Wei-Sheng Chin, Bo-Wen Yuan, Mengyuan Yang, Yong Zhuang, Yu-Chin Juan, Chih-Jen Lin:
LIBMF: A Library for Parallel Matrix Factorization in Shared-memory Systems. J. Mach. Learn. Res. 17: 86:1-86:5 (2016) - [c43]Wei-Lin Chiang, Mu-Chu Lee, Chih-Jen Lin:
Parallel Dual Coordinate Descent Method for Large-scale Linear Classification in Multi-core Environments. KDD 2016: 1485-1494 - [c42]Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, Chih-Jen Lin:
Field-aware Factorization Machines for CTR Prediction. RecSys 2016: 43-50 - [c41]Hsin-Yuan Huang, Chih-Jen Lin:
Linear and Kernel Classification: When to Use Which? SDM 2016: 216-224 - 2015
- [j56]Chun-Liang Li, Yu-Chuan Su, Ting-Wei Lin, Cheng-Hao Tsai, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Chun-Pai Yang, Cheng-Xia Chang, Wei-Sheng Chin, Yu-Chin Juan, Hsiao-Yu Tung, Jui-Pin Wang, Cheng-Kuang Wei, Felix Wu, Tu-Chun Yin, Tong Yu, Yong Zhuang, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin:
Combination of feature engineering and ranking models for paper-author identification in KDD cup 2013. J. Mach. Learn. Res. 16: 2921-2947 (2015) - [j55]Chien-Chih Wang, Chun-Heng Huang, Chih-Jen Lin:
Subsampled Hessian Newton Methods for Supervised Learning. Neural Comput. 27(8): 1766-1795 (2015) - [j54]Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Chih-Jen Lin:
A Fast Parallel Stochastic Gradient Method for Matrix Factorization in Shared Memory Systems. ACM Trans. Intell. Syst. Technol. 6(1): 2:1-2:24 (2015) - [c40]Mu-Chu Lee, Wei-Lin Chiang, Chih-Jen Lin:
Fast Matrix-Vector Multiplications for Large-Scale Logistic Regression on Shared-Memory Systems. ICDM 2015: 835-840 - [c39]Bo-Yu Chu, Chia-Hua Ho, Cheng-Hao Tsai, Chieh-Yen Lin, Chih-Jen Lin:
Warm Start for Parameter Selection of Linear Classifiers. KDD 2015: 149-158 - [c38]Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Chih-Jen Lin:
A Learning-Rate Schedule for Stochastic Gradient Methods to Matrix Factorization. PAKDD (1) 2015: 442-455 - [c37]Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, Chih-Jen Lin:
Distributed Newton Methods for Regularized Logistic Regression. PAKDD (2) 2015: 690-703 - 2014
- [j53]Po-Wei Wang, Chih-Jen Lin:
Iteration complexity of feasible descent methods for convex optimization. J. Mach. Learn. Res. 15(1): 1523-1548 (2014) - [j52]Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Felix Wu, Hsiao-Yu Tung, Tong Yu, Jui-Pin Wang, Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin, Chun-Liang Li, Ting-Wei Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin:
Effective string processing and matching for author disambiguation. J. Mach. Learn. Res. 15(1): 3037-3064 (2014) - [j51]Ching-Pei Lee, Chih-Jen Lin:
Large-Scale Linear RankSVM. Neural Comput. 26(4): 781-817 (2014) - [j50]Meng-Chieh Yu, Tong Yu, Shao-Chen Wang, Chih-Jen Lin, Edward Y. Chang:
Big Data Small Footprint: The Design of A Low-Power Classifier for Detecting Transportation Modes. Proc. VLDB Endow. 7(13): 1429-1440 (2014) - [c36]Chieh-Yen Lin, Cheng-Hao Tsai, Ching-Pei Lee, Chih-Jen Lin:
Large-scale logistic regression and linear support vector machines using spark. IEEE BigData 2014: 519-528 - [c35]Cheng-Hao Tsai, Chieh-Yen Lin, Chih-Jen Lin:
Incremental and decremental training for linear classification. KDD 2014: 343-352 - [c34]Tzu-Ming Kuo, Ching-Pei Lee, Chih-Jen Lin:
Large-scale Kernel RankSVM. SDM 2014: 812-820 - [p2]Po-Wei Wang, Chih-Jen Lin:
Support Vector Machines. Data Classification: Algorithms and Applications 2014: 187-204 - 2013
- [j49]Ching-Pei Lee, Chih-Jen Lin:
A Study on L2-Loss (Squared Hinge-Loss) Multiclass SVM. Neural Comput. 25(5): 1302-1323 (2013) - [c33]Aditya Khosla, Raffay Hamid, Chih-Jen Lin, Neel Sundaresan:
Large-Scale Video Summarization Using Web-Image Priors. CVPR 2013: 2698-2705 - [c32]Raffay Hamid, Dennis DeCoste, Chih-Jen Lin:
Dense Non-rigid Point-Matching Using Random Projections. CVPR 2013: 2914-2921 - [c31]Chun-Liang Li, Yu-Chuan Su, Ting-Wei Lin, Cheng-Hao Tsai, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Chun-Pai Yang, Cheng-Xia Chang, Wei-Sheng Chin, Yu-Chin Juan, Hsiao-Yu Tung, Jui-Pin Wang, Cheng-Kuang Wei, Felix Wu, Tu-Chun Yin, Tong Yu, Yong Zhuang, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin:
Combination of feature engineering and ranking models for paper-author identification in KDD Cup 2013. KDD Cup 2013: 2:1-2:7 - [c30]Wei-Sheng Chin, Yu-Chin Juan, Yong Zhuang, Felix Wu, Hsiao-Yu Tung, Tong Yu, Jui-Pin Wang, Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin, Chun-Liang Li, Ting-Wei Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin:
Effective string processing and matching for author disambiguation. KDD Cup 2013: 7:1-7:9 - [c29]Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, Chih-Jen Lin:
A fast parallel SGD for matrix factorization in shared memory systems. RecSys 2013: 249-256 - 2012
- [j48]Guo-Xun Yuan, Chia-Hua Ho, Chih-Jen Lin:
An Improved GLMNET for L1-regularized Logistic Regression. J. Mach. Learn. Res. 13: 1999-2030 (2012) - [j47]Chia-Hua Ho, Chih-Jen Lin:
Large-scale linear support vector regression. J. Mach. Learn. Res. 13: 3323-3348 (2012) - [j46]Guo-Xun Yuan, Chia-Hua Ho, Chih-Jen Lin:
Recent Advances of Large-Scale Linear Classification. Proc. IEEE 100(9): 2584-2603 (2012) - [j45]Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Large Linear Classification When Data Cannot Fit in Memory. ACM Trans. Knowl. Discov. Data 5(4): 23:1-23:23 (2012) - [c28]Chih-Jen Lin:
Experiences and lessons in developing industry-strength machine learning and data mining software. KDD 2012: 1176 - [c27]Po-Lung Chen, Chen-Tse Tsai, Yao-Nan Chen, Ku-Chun Chou, Chun-Liang Li, Cheng-Hao Tsai, Kuan-Wei Wu, Yu-Cheng Chou, Chung-Yi Li, Wei-Shih Lin, Shu-Hao Yu, Rong-Bing Chiu, Chieh-Yen Lin, Chien-Chih Wang, Po-Wei Wang, Wei-Lun Su, Chen-Hung Wu, Tsung-Ting Kuo, Todd G. McKenzie, Ya-Hsuan Chang, Chun-Sung Ferng, Chia-Mau Ni, Hsuan-Tien Lin, Chih-Jen Lin, Shou-De Lin:
A Linear Ensemble of Individual and Blended Models for Music Rating Prediction. KDD Cup 2012: 21-60 - [c26]Todd G. McKenzie, Chun-Sung Ferng, Yao-Nan Chen, Chun-Liang Li, Cheng-Hao Tsai, Kuan-Wei Wu, Ya-Hsuan Chang, Chung-Yi Li, Wei-Shih Lin, Shu-Hao Yu, Chieh-Yen Lin, Po-Wei Wang, Chia-Mau Ni, Wei-Lun Su, Tsung-Ting Kuo, Chen-Tse Tsai, Po-Lung Chen, Rong-Bing Chiu, Ku-Chun Chou, Yu-Cheng Chou, Chien-Chih Wang, Chen-Hung Wu, Hsuan-Tien Lin, Chih-Jen Lin, Shou-De Lin:
Novel Models and Ensemble Techniques to Discriminate Favorite Items from Unrated Ones for Personalized Music Recommendation. KDD Cup 2012: 101-135 - 2011
- [j44]Ruby C. Weng, Chih-Jen Lin:
A Bayesian Approximation Method for Online Ranking. J. Mach. Learn. Res. 12: 267-300 (2011) - [j43]Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin:
Dual coordinate descent methods for logistic regression and maximum entropy models. Mach. Learn. 85(1-2): 41-75 (2011) - [j42]Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, Edward Y. Chang:
Parallel Spectral Clustering in Distributed Systems. IEEE Trans. Pattern Anal. Mach. Intell. 33(3): 568-586 (2011) - [j41]Chih-Chung Chang, Chih-Jen Lin:
LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3): 27:1-27:27 (2011) - [c25]Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Large Linear Classification When Data Cannot Fit in Memory. IJCAI 2011: 2777-2782 - [c24]Guo-Xun Yuan, Chia-Hua Ho, Chih-Jen Lin:
An improved GLMNET for l1-regularized logistic regression. KDD 2011: 33-41 - 2010
- [j40]Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models. J. Mach. Learn. Res. 11: 815-848 (2010) - [j39]Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, Chih-Jen Lin:
Training and Testing Low-degree Polynomial Data Mappings via Linear SVM. J. Mach. Learn. Res. 11: 1471-1490 (2010) - [j38]Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin:
A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification. J. Mach. Learn. Res. 11: 3183-3234 (2010) - [c23]Tsung-Ting Kuo, Jung-Jung Yeh, Chih-Jen Lin, Shou-De Lin:
Designing, Analyzing and Exploiting Stake-Based Social Networks. ASONAM 2010: 402-403 - [c22]Ming-Hen Tsai, Chia-Hua Ho, Chih-Jen Lin:
Active learning strategies using SVMs. IJCNN 2010: 1-8 - [c21]Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Large linear classification when data cannot fit in memory. KDD 2010: 833-842
2000 – 2009
- 2009
- [c20]Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Iterative Scaling and Coordinate Descent Methods for Maximum Entropy. ACL/IJCNLP (2) 2009: 285-288 - [c19]Hung-Yi Lo, Kai-Wei Chang, Shang-Tse Chen, Tsung-Hsien Chiang, Chun-Sung Ferng, Cho-Jui Hsieh, Yi-Kuang Ko, Tsung-Ting Kuo, Hung-Che Lai, Ken-Yi Lin, Chia-Hsuan Wang, Hsiang-Fu Yu, Chih-Jen Lin, Hsuan-Tien Lin, Shou-De Lin:
An Ensemble of Three Classifiers for KDD Cup 2009: Expanded Linear Model, Heterogeneous Boosting, and Selective Naive Bayes. KDD Cup 2009: 57-64 - 2008
- [j37]Hsi-Che Liu, Chien-Yu Chen, Yu-Ting Liu, Cheng-Bang Chu, Der-Cherng Liang, Lee-Yung Shih, Chih-Jen Lin:
Cross-generation and cross-laboratory predictions of Affymetrix microarrays by rank-based methods. J. Biomed. Informatics 41(4): 570-579 (2008) - [j36]Chih-Jen Lin, Ruby C. Weng, S. Sathiya Keerthi:
Trust Region Newton Method for Logistic Regression. J. Mach. Learn. Res. 9: 627-650 (2008) - [j35]Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin:
Coordinate Descent Method for Large-scale L2-loss Linear Support Vector Machines. J. Mach. Learn. Res. 9: 1369-1398 (2008) - [j34]Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin:
LIBLINEAR: A Library for Large Linear Classification. J. Mach. Learn. Res. 9: 1871-1874 (2008) - [c18]Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, S. Sundararajan:
A dual coordinate descent method for large-scale linear SVM. ICML 2008: 408-415 - [c17]S. Sathiya Keerthi, S. Sundararajan, Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin:
A sequential dual method for large scale multi-class linear svms. KDD 2008: 408-416 - [c16]Yangqiu Song, WenYen Chen, Hongjie Bai, Chih-Jen Lin, Edward Y. Chang:
Parallel Spectral Clustering. ECML/PKDD (2) 2008: 374-389 - [c15]Yin-Wen Chang, Chih-Jen Lin:
Feature Ranking Using Linear SVM. WCCI Causation and Prediction Challenge 2008: 53-64 - 2007
- [j33]Hsuan-Tien Lin, Chih-Jen Lin, Ruby C. Weng:
A note on Platt's probabilistic outputs for support vector machines. Mach. Learn. 68(3): 267-276 (2007) - [j32]Chih-Jen Lin:
Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Comput. 19(10): 2756-2779 (2007) - [j31]Chih-Jen Lin:
On the Convergence of Multiplicative Update Algorithms for Nonnegative Matrix Factorization. IEEE Trans. Neural Networks 18(6): 1589-1596 (2007) - [c14]Chih-Jen Lin, Ruby C. Weng, S. Sathiya Keerthi:
Trust region Newton methods for large-scale logistic regression. ICML 2007: 561-568 - [c13]Ming-Fang Weng, Chun-Kang Chen, Yi-Hsuan Yang, Rong-En Fan, Yu-Ting Hsieh, Yung-Yu Chuang, Winston H. Hsu, Chih-Jen Lin:
The NTU Toolkit and Framework for High-Level Feature Detection at TRECVID 2007. TRECVID 2007 - 2006
- [j30]Tzu-Kuo Huang, Ruby C. Weng, Chih-Jen Lin:
Generalized Bradley-Terry Models and Multi-Class Probability Estimates. J. Mach. Learn. Res. 7: 85-115 (2006) - [j29]Pai-Hsuen Chen, Rong-En Fan, Chih-Jen Lin:
A study on SMO-type decomposition methods for support vector machines. IEEE Trans. Neural Networks 17(4): 893-908 (2006) - [c12]Tzu-Kuo Huang, Chih-Jen Lin, Ruby C. Weng:
Ranking individuals by group comparisons. ICML 2006: 425-432 - [p1]Yi-Wei Chen, Chih-Jen Lin:
Combining SVMs with Various Feature Selection Strategies. Feature Extraction 2006: 315-324 - 2005
- [j28]Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin:
Working Set Selection Using Second Order Information for Training Support Vector Machines. J. Mach. Learn. Res. 6: 1889-1918 (2005) - [j27]Ming-Wei Chang, Chih-Jen Lin:
Leave-One-Out Bounds for Support Vector Regression Model Selection. Neural Comput. 17(5): 1188-1222 (2005) - [c11]Pai-Hsuen Chen, Rong-En Fan, Chih-Jen Lin:
Training Support Vector Machines via SMO-Type Decomposition Methods. ALT 2005: 45-62 - [c10]Pai-Hsuen Chen, Rong-En Fan, Chih-Jen Lin:
Training Support Vector Machines via SMO-Type Decomposition Methods. Discovery Science 2005: 15 - 2004
- [j26]Ting-Fan Wu, Chih-Jen Lin, Ruby C. Weng:
Probability Estimates for Multi-class Classification by Pairwise Coupling. J. Mach. Learn. Res. 5: 975-1005 (2004) - [j25]Wei-Chun Kao, Kai-Min Chung, Chia-Liang Sun, Chih-Jen Lin:
Decomposition Methods for Linear Support Vector Machines. Neural Comput. 16(8): 1689-1704 (2004) - [j24]Ming-Wei Chang, Chih-Jen Lin, Ruby Chiu-Hsing Weng:
Analysis of switching dynamics with competing support vector machines. IEEE Trans. Neural Networks 15(3): 720-727 (2004) - [c9]Tzu-Kuo Huang, Chih-Jen Lin, Ruby C. Weng:
A Generalized Bradley-Terry Model: From Group Competition to Individual Skill. NIPS 2004: 601-608 - 2003
- [j23]Colin Campbell, Chih-Jen Lin, S. Sathiya Keerthi, V. David Sánchez A.:
Special issue on support vector machines. Neurocomputing 55(1-2): 1-3 (2003) - [j22]S. Sathiya Keerthi, Chih-Jen Lin:
Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Comput. 15(7): 1667-1689 (2003) - [j21]Kai-Min Chung, Wei-Chun Kao, Chia-Liang Sun, Li-Lun Wang, Chih-Jen Lin:
Radius Margin Bounds for Support Vector Machines with the RBF Kernel. Neural Comput. 15(11): 2643-2681 (2003) - [j20]Kuan-Ming Lin, Chih-Jen Lin:
A study on reduced support vector machines. IEEE Trans. Neural Networks 14(6): 1449-1459 (2003) - [c8]Kai-Min Chung, Wei-Chun Kao, Tony Sun, Chih-Jen Lin:
Decomposition methods for linear support vector machines. ICASSP (4) 2003: 868-871 - [c7]Ting-Fan Wu, Chih-Jen Lin, Ruby C. Weng:
Probability Estimates for Multi-Class Classification by Pairwise Coupling. NIPS 2003: 529-536 - 2002
- [j19]Chih-Wei Hsu, Chih-Jen Lin:
A Simple Decomposition Method for Support Vector Machines. Mach. Learn. 46(1-3): 291-314 (2002) - [j18]Shuo-Peng Liao, Hsuan-Tien Lin, Chih-Jen Lin:
A Note on the Decomposition Methods for Support Vector Regression. Neural Comput. 14(6): 1267-1281 (2002) - [j17]Chih-Chung Chang, Chih-Jen Lin:
Training v -Support Vector Regression: Theory and Algorithms. Neural Comput. 14(8): 1959-1977 (2002) - [j16]Chih-Jen Lin:
Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans. Neural Networks 13(1): 248-250 (2002) - [j15]Chih-Wei Hsu, Chih-Jen Lin:
A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 13(2): 415-425 (2002) - [j14]Chih-Jen Lin:
Errata to "On the convergence of the decomposition method for support vector machines". IEEE Trans. Neural Networks 13(4): 1025 (2002) - [j13]Chih-Jen Lin:
Errata to "A comparison of methods for multiclass support vector machines". IEEE Trans. Neural Networks 13(4): 1026-1027 (2002) - [j12]Chih-Jen Lin:
A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Trans. Neural Networks 13(5): 1045-1052 (2002) - [c6]Ming-Wei Chang, Chih-Jen Lin, Ruby C. Weng:
Analysis of Nonstationary Time Series Using Support Vector Machines. SVM 2002: 160-170 - 2001
- [j11]Soon-Yi Wu, Shu-Cherng Fang, Chih-Jen Lin:
Solving General Capacity Problem by Relaxed Cutting Plane Approach. Ann. Oper. Res. 103(1-4): 193-211 (2001) - [j10]Jinn-Moon Yang, Jorng-Tzong Horng, Chih-Jen Lin, Cheng-Yan Kao:
Optical Coating Designs Using the Family Competition Evolutionary Algorithm. Evol. Comput. 9(4): 421-443 (2001) - [j9]Chih-Jen Lin:
Formulations of Support Vector Machines: A Note from an Optimization Point of View. Neural Comput. 13(2): 307-317 (2001) - [j8]Chih-Chung Chang, Chih-Jen Lin:
Training nu-Support Vector Classifiers: Theory and Algorithms. Neural Comput. 13(9): 2119-2147 (2001) - [j7]Chih-Jen Lin:
On the convergence of the decomposition method for support vector machines. IEEE Trans. Neural Networks 12(6): 1288-1298 (2001) - 2000
- [j6]Chih-Chung Chang, Chih-Wei Hsu, Chih-Jen Lin:
The analysis of decomposition methods for support vector machines. IEEE Trans. Neural Networks Learn. Syst. 11(4): 1003-1008 (2000)
1990 – 1999
- 1999
- [j5]Chih-Jen Lin, Jorge J. Moré:
Newton's Method for Large Bound-Constrained Optimization Problems. SIAM J. Optim. 9(4): 1100-1127 (1999) - [j4]Chih-Jen Lin, Jorge J. Moré:
Incomplete Cholesky Factorizations with Limited Memory. SIAM J. Sci. Comput. 21(1): 24-45 (1999) - 1998
- [j3]Chih-Jen Lin, Shu-Cherng Fang, Soon-Yi Wu:
An Unconstrained Convex Programming Approach to Linear Semi-Infinite Programming. SIAM J. Optim. 8(2): 443-456 (1998) - [j2]Huan-Chih Tsai, Kwang-Ting Cheng, Chih-Jen Lin, Sudipta Bhawmik:
Efficient test-point selection for scan-based BIST. IEEE Trans. Very Large Scale Integr. Syst. 6(4): 667-676 (1998) - 1997
- [c5]Huan-Chih Tsai, Kwang-Ting Cheng, Chih-Jen Lin, Sudipta Bhawmik:
A Hybrid Algorithm for Test Point Selection for Scan-Based BIST. DAC 1997: 478-483 - 1995
- [j1]Chih-Jen Lin, Yervant Zorian, Sudipta Bhawmik:
Integration of partial scan and built-in self-test. J. Electron. Test. 7(1-2): 125-137 (1995) - [c4]Kwang-Ting Cheng, Chih-Jen Lin:
Timing-Driven Test Point Insertion for Full-Scan and Partial-Scan BIST. ITC 1995: 506-514 - 1993
- [c3]Chih-Jen Lin, Yervant Zorian, Sudipta Bhawmik:
PSBIST: A Partial-Scan Based Built-In Self-Test Scheme. ITC 1993: 507-516 - [c2]Ching-Wen Hsue, Chih-Jen Lin:
Built-In Current Sensor for IDDQ Test in CMOS. ITC 1993: 635-641 - 1991
- [c1]Tapan J. Chakraborty, Sudipta Bhawmik, Robert Bencivenga, Chih-Jen Lin:
Enhanced Controllability for IDDQ Test Sets Using Partial Scan. DAC 1991: 278-281
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-25 23:44 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint