default search action
Michael Botsch
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c43]Marion Neumeier, Sebastian Dorn, Michael Botsch, Wolfgang Utschick:
Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models. CVPR Workshops 2024: 3461-3470 - [c42]Alexander Fertig, Lakshman Balasubramanian, Michael Botsch:
Clustering and Anomaly Detection in Embedding Spaces for the Validation of Automotive Sensors. IV 2024: 1076-1083 - [c41]Karthikeyan Chandra Sekaran, Lakshman Balasubramanian, Michael Botsch, Wolfgang Utschick:
Open-Set Object Detection for the Identification and Localization of Dissimilar Novel Classes by means of Infrastructure Sensors. IV 2024: 1643-1650 - [i18]Marion Neumeier, Sebastian Dorn, Michael Botsch, Wolfgang Utschick:
Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models. CoRR abs/2405.14384 (2024) - 2023
- [j6]Alberto Flores Fernández, Eduardo Sánchez Morales, Michael Botsch, Christian Facchi, Andrés García Higuera:
Generation of Correction Data for Autonomous Driving by Means of Machine Learning and On-Board Diagnostics. Sensors 23(1): 159 (2023) - [j5]Lakshman Balasubramanian, Jonas Wurst, Michael Botsch, Ke Deng:
Open-World Learning for Traffic Scenarios Categorisation. IEEE Trans. Intell. Veh. 8(5): 3506-3521 (2023) - [c40]Michael Botsch, Werner Huber, Lakshman Balasubramanian, Alberto Flores Fernández, Markus Geisler, Christian Gudera, Mauricio Rene Morales Gomez, Peter Riegl, Eduardo Sánchez Morales, Karthikeyan Chandra Sekaran:
Data Collection and Safety Use Cases in Smart Infrastructures. AutomotiveUI (Adjunct Proceedings) 2023: 333-336 - [c39]Marion Neumeier, Sebastian Dorn, Michael Botsch, Wolfgang Utschick:
Prediction and Interpretation of Vehicle Trajectories in the Graph Spectral Domain. ITSC 2023: 1172-1179 - [c38]Parthasarathy Nadarajan, Michael Botsch, Sebastian Sardiña:
Continuous Probabilistic Motion Prediction Based on Latent Space Interpolation. ITSC 2023: 3796-3803 - [c37]Lakshman Balasubramanian, Jonas Wurst, Robin Egolf, Michael Botsch, Wolfgang Utschick, Ke Deng:
SceneDiffusion: Conditioned Latent Diffusion Models for Traffic Scene Prediction. ITSC 2023: 3914-3921 - [c36]Marion Neumeier, Andreas Tollkühn, Sebastian Dorn, Michael Botsch, Wolfgang Utschick:
Optimization and Interpretability of Graph Attention Networks for Small Sparse Graph Structures in Automotive Applications. IV 2023: 1-8 - [c35]Karthikeyan Chandra Sekaran, Lakshman Balasubramanian, Michael Botsch, Wolfgang Utschick:
Metric Learning Based Class Specific Experts for Open-Set Recognition of Traffic Participants in Urban Areas Using Infrastructure Sensors. IV 2023: 1-8 - [i17]Marion Neumeier, Andreas Tollkühn, Sebastian Dorn, Michael Botsch, Wolfgang Utschick:
Gradient Derivation for Learnable Parameters in Graph Attention Networks. CoRR abs/2304.10939 (2023) - [i16]Marion Neumeier, Andreas Tollkühn, Michael Botsch, Wolfgang Utschick:
A Multidimensional Graph Fourier Transformation Neural Network for Vehicle Trajectory Prediction. CoRR abs/2305.07416 (2023) - [i15]Marion Neumeier, Andreas Tollkühn, Sebastian Dorn, Michael Botsch, Wolfgang Utschick:
Optimization and Interpretability of Graph Attention Networks for Small Sparse Graph Structures in Automotive Applications. CoRR abs/2305.16196 (2023) - [i14]Marion Neumeier, Sebastian Dorn, Michael Botsch, Wolfgang Utschick:
Prediction and Interpretation of Vehicle Trajectories in the Graph Spectral Domain. CoRR abs/2309.16702 (2023) - 2022
- [j4]Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, Michael Botsch:
Micro- and Macroscopic Road Traffic Analysis using Drone Image Data. Leibniz Trans. Embed. Syst. 8(1): 02:1-02:27 (2022) - [j3]Alberto Flores Fernández, Jonas Wurst, Eduardo Sánchez Morales, Michael Botsch, Christian Facchi, Andrés García Higuera:
Probabilistic Traffic Motion Labeling for Multi-Modal Vehicle Route Prediction. Sensors 22(12): 4498 (2022) - [c34]Marion Neumeier, Andreas Tollkühn, Michael Botsch, Wolfgang Utschick:
A Multidimensional Graph Fourier Transformation Neural Network for Vehicle Trajectory Prediction. ITSC 2022: 687-694 - [c33]Tim Elter, Tobias Dirndorfer, Michael Botsch, Wolfgang Utschick:
Interaction-aware Prediction of Occupancy Regions based on a POMDP Framework. ITSC 2022: 980-987 - [c32]Lakshman Balasubramanian, Jonas Wurst, Robin Egolf, Michael Botsch, Wolfgang Utschick, Ke Deng:
ExAgt: Expert-guided Augmentation for Representation Learning of Traffic Scenarios. ITSC 2022: 1471-1478 - [c31]Jonas Wurst, Lakshman Balasubramanian, Michael Botsch, Wolfgang Utschick:
Expert-LaSTS: Expert-Knowledge Guided Latent Space for Traffic Scenarios. IV 2022: 484-491 - [i13]Lakshman Balasubramanian, Jonas Wurst, Robin Egolf, Michael Botsch, Wolfgang Utschick, Ke Deng:
ExAgt: Expert-guided Augmentation for Representation Learning of Traffic Scenarios. CoRR abs/2207.08609 (2022) - [i12]Jonas Wurst, Lakshman Balasubramanian, Michael Botsch, Wolfgang Utschick:
Expert-LaSTS: Expert-Knowledge Guided Latent Space for Traffic Scenarios. CoRR abs/2207.09120 (2022) - 2021
- [j2]Eduardo Sánchez Morales, Julian Dauth, Bertold Huber, Andrés García Higuera, Michael Botsch:
High Precision Outdoor and Indoor Reference State Estimation for Testing Autonomous Vehicles. Sensors 21(4): 1131 (2021) - [c30]Oliver Gallitz, Oliver De Candido, Michael Botsch, Wolfgang Utschick:
Interpretable Early Prediction of Lane Changes Using a Constrained Neural Network Architecture. ITSC 2021: 493-499 - [c29]Marion Neumeier, Michael Botsch, Andreas Tollkühn, Thomas Berberich:
Variational Autoencoder-Based Vehicle Trajectory Prediction with an Interpretable Latent Space. ITSC 2021: 820-827 - [c28]Lakshman Balasubramanian, Friedrich Kruber, Michael Botsch, Ke Deng:
Open-Set Recognition based on the Combination of Deep Learning and Ensemble Method for Detecting Unknown Traffic Scenarios. IV 2021: 674-681 - [c27]Lakshman Balasubramanian, Jonas Wurst, Michael Botsch, Ke Deng:
Traffic Scenario Clustering by Iterative Optimisation of Self-Supervised Networks Using a Random Forest Activation Pattern Similarity. IV 2021: 682-689 - [c26]Jonas Wurst, Lakshman Balasubramanian, Michael Botsch, Wolfgang Utschick:
Novelty Detection and Analysis of Traffic Scenario Infrastructures in the Latent Space of a Vision Transformer-Based Triplet Autoencoder. IV 2021: 1304-1311 - [i11]Marion Neumeier, Andreas Tollkühn, Thomas Berberich, Michael Botsch:
Variational Autoencoder-Based Vehicle Trajectory Prediction with an Interpretable Latent Space. CoRR abs/2103.13726 (2021) - [i10]Jonas Wurst, Lakshman Balasubramanian, Michael Botsch, Wolfgang Utschick:
Novelty Detection and Analysis of Traffic Scenario Infrastructures in the Latent Space of a Vision Transformer-Based Triplet Autoencoder. CoRR abs/2105.01924 (2021) - [i9]Lakshman Balasubramanian, Friedrich Kruber, Michael Botsch, Ke Deng:
Open-set Recognition based on the Combination of Deep Learning and Ensemble Method for Detecting Unknown Traffic Scenarios. CoRR abs/2105.07635 (2021) - [i8]Lakshman Balasubramanian, Jonas Wurst, Michael Botsch, Ke Deng:
Traffic Scenario Clustering by Iterative Optimisation of Self-Supervised Networks Using a Random Forest Activation Pattern Similarity. CoRR abs/2105.07639 (2021) - 2020
- [c25]Oliver Gallitz, Oliver De Candido, Michael Botsch, Ron Melz, Wolfgang Utschick:
Interpretable Machine Learning Structure for an Early Prediction of Lane Changes. ICANN (1) 2020: 337-349 - [c24]Oliver De Candido, Michael Koller, Oliver Gallitz, Ron Melz, Michael Botsch, Wolfgang Utschick:
Towards Feature Validation in Time to Lane Change Classification using Deep Neural Networks. ITSC 2020: 1-8 - [c23]Jonas Wurst, Alberto Flores Fernández, Michael Botsch, Wolfgang Utschick:
An Entropy Based Outlier Score and its Application to Novelty Detection for Road Infrastructure Images. IV 2020: 1436-1443 - [c22]Eduardo Sánchez Morales, Friedrich Kruber, Michael Botsch, Bertold Huber, Andrés García Higuera:
Accuracy Characterization of the Vehicle State Estimation from Aerial Imagery. IV 2020: 2081-2088 - [c21]Friedrich Kruber, Eduardo Sánchez Morales, Samarjit Chakraborty, Michael Botsch:
Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial Vehicles. IV 2020: 2089-2096 - [i7]Friedrich Kruber, Jonas Wurst, Michael Botsch:
An Unsupervised Random Forest Clustering Technique for Automatic Traffic Scenario Categorization. CoRR abs/2004.02121 (2020) - [i6]Friedrich Kruber, Jonas Wurst, Eduardo Sánchez Morales, Samarjit Chakraborty, Michael Botsch:
Unsupervised and Supervised Learning with the Random Forest Algorithm for Traffic Scenario Clustering and Classification. CoRR abs/2004.02126 (2020) - [i5]Friedrich Kruber, Eduardo Sánchez Morales, Samarjit Chakraborty, Michael Botsch:
Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial Vehicles. CoRR abs/2004.08206 (2020) - [i4]Eduardo Sánchez Morales, Richard Membarth, Andreas Gaull, Philipp Slusallek, Tobias Dirndorfer, Alexander Kammenhuber, Christoph Lauer, Michael Botsch:
Parallel Multi-Hypothesis Algorithm for Criticality Estimation in Traffic and Collision Avoidance. CoRR abs/2005.06773 (2020) - [i3]Eduardo Sánchez Morales, Michael Botsch, Bertold Huber, Andrés García Higuera:
High Precision Indoor Navigation for Autonomous Vehicles. CoRR abs/2005.06791 (2020) - [i2]Eduardo Sánchez Morales, Michael Botsch, Bertold Huber, Andrés García Higuera:
High precision indoor positioning by means of LiDAR. CoRR abs/2005.06798 (2020) - [i1]Jonas Wurst, Alberto Flores Fernández, Michael Botsch, Wolfgang Utschick:
An Entropy Based Outlier Score and its Application to Novelty Detection for Road Infrastructure Images. CoRR abs/2005.13288 (2020)
2010 – 2019
- 2019
- [c20]Amit Chaulwar, Hussein Al-Hashimi, Michael Botsch, Wolfgang Utschick:
Efficient Hybrid Machine Learning Algorithm for Trajectory Planning in Critical Traffic-Scenarios. ICITE 2019: 196-202 - [c19]Eduardo Sánchez Morales, Michael Botsch, Bertold Huber, Andrés García Higuera:
High Precision Indoor Navigation for Autonomous Vehicles. IPIN 2019: 1-8 - [c18]Oliver Gallitz, Oliver De Candido, Michael Botsch, Wolfgang Utschick:
Interpretable Feature Generation using Deep Neural Networks and its Application to Lane Change Detection. ITSC 2019: 3405-3411 - [c17]Eduardo Sánchez Morales, Richard Membarth, Andreas Gaull, Philipp Slusallek, Tobias Dirndorfer, Alexander Kammenhuber, Christoph Lauer, Michael Botsch:
Parallel Multi-Hypothesis Algorithm for Criticality Estimation in Traffic and Collision Avoidance. IV 2019: 2164-2171 - [c16]Friedrich Kruber, Jonas Wurst, Eduardo Sánchez Morales, Samarjit Chakraborty, Michael Botsch:
Unsupervised and Supervised Learning with the Random Forest Algorithm for Traffic Scenario Clustering and Classification. IV 2019: 2463-2470 - 2018
- [c15]Amit Chaulwar, Michael Botsch, Wolfgang Utschick:
Generation of Reference Trajectories for Safe Trajectory Planning. ICANN (1) 2018: 423-434 - [c14]Valentín Cañas, Eduardo Sánchez Morales, Michael Botsch, Andrés García:
Wireless Communication System for the Validation of Autonomous Driving Functions on Full-Scale Vehicles. ICVES 2018: 1-6 - [c13]Marcus Müller, Xing Longl, Michael Botsch, Dennis Böhmländer, Wolfgang Utschick:
Real-Time Crash Severity Estimation with Machine Learning and 2D Mass-Spring-Damper Model. ITSC 2018: 2036-2043 - [c12]Friedrich Kruber, Jonas Wurst, Michael Botsch:
An Unsupervised Random Forest Clustering Technique for Automatic Traffic Scenario Categorization. ITSC 2018: 2811-2818 - 2017
- [j1]Gennaro Notomista, Michael Botsch:
A Machine Learning Approach for the Segmentation of Driving Maneuvers and its Application in Autonomous Parking. J. Artif. Intell. Soft Comput. Res. 7(4): 243 (2017) - [c11]Parthasarathy Nadarajan, Michael Botsch, Sebastian Sardiña:
Predicted-occupancy grids for vehicle safety applications based on autoencoders and the Random Forest algorithm. IJCNN 2017: 1244-1251 - [c10]Amit Chaulwar, Michael Botsch, Wolfgang Utschick:
A machine learning based biased-sampling approach for planning safe trajectories in complex, dynamic traffic-scenarios. Intelligent Vehicles Symposium 2017: 297-303 - 2016
- [c9]Amit Chaulwar, Michael Botsch, Wolfgang Utschick:
A Hybrid Machine Learning Approach for Planning Safe Trajectories in Complex Traffic-Scenarios. ICMLA 2016: 540-546 - [c8]Marcus Müller, Parthasarathy Nadarajan, Michael Botsch, Wolfgang Utschick, Dennis Böhmländer, Stefan Katzenbogen:
A statistical learning approach for estimating the reliability of crash severity predictions. ITSC 2016: 2199-2206 - [c7]Parthasarathy Nadarajan, Michael Botsch:
Probability estimation for Predicted-Occupancy Grids in vehicle safety applications based on machine learning. Intelligent Vehicles Symposium 2016: 1285-1292 - 2015
- [c6]Gennaro Notomista, Michael Botsch:
Maneuver segmentation for autonomous parking based on ensemble learning. IJCNN 2015: 1-8 - [c5]Stephan Herrmann, Wolfgang Utschick, Michael Botsch, Frank Keck:
Supervised Learning via Optimal Control Labeling for Criticality Classification in Vehicle Active Safety. ITSC 2015: 2024-2031 - 2010
- [c4]Michael Reichel, Michael Botsch, Robert Rauschecker, Karl-Heinz Siedersberger, Markus Maurer:
Situation aspect modelling and classification using the Scenario Based Random Forest algorithm for convoy merging situations. ITSC 2010: 360-366 - [c3]Michael Botsch, Christoph Lauer:
Complexity reduction using the Random Forest classifier in a collision detection algorithm. Intelligent Vehicles Symposium 2010: 1228-1235
2000 – 2009
- 2008
- [c2]Michael Botsch, Josef A. Nossek:
Construction of interpretable Radial Basis Function classifiers based on the Random Forest kernel. IJCNN 2008: 220-227 - 2007
- [c1]Michael Botsch, Josef A. Nossek:
Feature Selection for Change Detection in Multivariate Time-Series. CIDM 2007: 590-597
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 12:54 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint