default search action
Vaibhav A. Vaidya
Person information
Other persons with a similar name
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2010 – 2019
- 2019
- [j5]Pascal Andreas Meinerzhagen, Carlos Tokunaga, Andres Malavasi, Vaibhav A. Vaidya, Ashwin Mendon, Deepak Mathaikutty, Jaydeep Kulkarni, Charles Augustine, Minki Cho, Stephen T. Kim, George E. Matthew, Rinkle Jain, Joseph F. Ryan, Chung-Ching Peng, Somnath Paul, Sriram R. Vangal, Brando Perez Esparza, Luis Cuellar, Michael Woodman, Bala Iyer, Subramaniam Maiyuran, Gautham N. Chinya, Xiang Zou, Yuyun Liao, Krishnan Ravichandran, Hong Wang, Muhammad M. Khellah, James W. Tschanz, Vivek De:
An Energy-Efficient Graphics Processor in 14-nm Tri-Gate CMOS Featuring Integrated Voltage Regulators for Fine-Grain DVFS, Retentive Sleep, and ${V}_{\text{MIN}}$ Optimization. IEEE J. Solid State Circuits 54(1): 144-157 (2019) - 2018
- [j4]Harish Kumar Krishnamurthy, Vaibhav A. Vaidya, Pavan Kumar, Rinkle Jain, Sheldon Weng, Stephen T. Kim, George E. Matthew, Nachiket V. Desai, Xiaosen Liu, Krishnan Ravichandran, James W. Tschanz, Vivek De:
A Digitally Controlled Fully Integrated Voltage Regulator With On-Die Solenoid Inductor With Planar Magnetic Core in 14-nm Tri-Gate CMOS. IEEE J. Solid State Circuits 53(1): 8-19 (2018) - [j3]Mohamed Abouzied, Hatem Osman, Vaibhav A. Vaidya, Krishnan Ravichandran, Edgar Sánchez-Sinencio:
An Integrated Concurrent Multiple-Input Self-Startup Energy Harvesting Capacitive-Based DC Adder Combiner. IEEE Trans. Ind. Electron. 65(8): 6281-6290 (2018) - [c8]Pascal Meinerzhagen, Carlos Tokunaga, Andres Malavasi, Vaibhav A. Vaidya, Ashwin Mendon, Deepak Mathaikutty, Jaydeep Kulkarni, Charles Augustine, Minki Cho, Stephen T. Kim, George E. Matthew, Rinkle Jain, Joseph F. Ryan, Chung-Ching Peng, Somnath Paul, Sriram R. Vangal, Brando Perez Esparza, Luis Cuellar, Michael Woodman, Bala Iyer, Subramaniam Maiyuran, Gautham N. Chinya, Chris Zou, Yuyun Liao, Krishnan Ravichandran, Hong Wang, Muhammad M. Khellah, James W. Tschanz, Vivek De:
An energy-efficient graphics processor featuring fine-grain DVFS with integrated voltage regulators, execution-unit turbo, and retentive sleep in 14nm tri-gate CMOS. ISSCC 2018: 38-40 - [c7]Tanay Karnik, Dileep Kurian, Paolo A. Aseron, Richard Dorrance, Erkan Alpman, Angela Nicoara, Roman Popov, Leonid Azarenkov, Mikhail J. Moiseev, Li Zhao, Santosh Ghosh, Rafael Misoczki, Ankit Gupta, M. Akhila, Sriram Muthukumar, Saurabh Bhandari, Satish Yada, Kartik Jain, Robert Flory, Chanitnan Kanthapanit, Eduardo Quijano, Bradley Jackson, Hao Luo, Suhwan Kim, Vaibhav A. Vaidya, Adel Elsherbini, Renzhi Liu, Farhana Sheikh, Omesh Tickoo, Ilya Klotchkov, Manoj R. Sastry, Sheldon Sun, Mukesh Bhartiya, Anuradha Srinivasan, Yatin Hoskote, Hong Wang, Vivek De:
A cm-scale self-powered intelligent and secure IoT edge mote featuring an ultra-low-power SoC in 14nm tri-gate CMOS. ISSCC 2018: 46-48 - [c6]Suhwan Kim, Vaibhav A. Vaidya, Christopher Schaef, Andrew Lines, Harish Krishnamurthy, Sheldon Weng, Xiaosen Liu, Dileep Kurian, Tanay Karnik, Krishnan Ravichandran, James W. Tschanz, Vivek De:
A Single-Stage, Single-Inductor, 6-Input 9-Output Multi-Modal Energy Harvesting Power Management IC for 100µW-120MW Battery-Powered IoT Edge Nodes. VLSI Circuits 2018: 195-196 - 2017
- [c5]Paolo Madoglio, Hongtao Xu, Kailash Chandrashekar, Luis Cuellar, Muhammad Faisal, Yee William Li, Hyung Seok Kim, Khoa Minh Nguyen, Yulin Tan, Brent R. Carlton, Vaibhav A. Vaidya, Yanjie Wang, Thomas Tetzlaff, Satoshi Suzuki, Amr Fahim, Parmoon Seddighrad, Jianyong Xie, Zhichao Zhang, Divya Shree Vemparala, Ashoke Ravi, Stefano Pellerano, Yorgos Palaskas:
13.6 A 2.4GHz WLAN digital polar transmitter with synthesized digital-to-time converter in 14nm trigate/FinFET technology for IoT and wearable applications. ISSCC 2017: 226-227 - [c4]Harish Kumar Krishnamurthy, Vaibhav A. Vaidya, Sheldon Weng, Krishnan Ravichandran, Pavan Kumar, Stephen T. Kim, Rinkle Jain, George E. Matthew, Jim Tschanz, Vivek De:
20.1 A digitally controlled fully integrated voltage regulator with on-die solenoid inductor with planar magnetic core in 14nm tri-gate CMOS. ISSCC 2017: 336-337 - 2016
- [j2]Suvankar Biswas, Lilly Huang, Vaibhav A. Vaidya, Krishnan Ravichandran, Ned Mohan, Sairaj V. Dhople:
Universal Current-Mode Control Schemes to Charge Li-Ion Batteries Under DC/PV Source. IEEE Trans. Circuits Syst. I Regul. Pap. 63-I(9): 1531-1542 (2016) - 2015
- [j1]Rinkle Jain, Stephen T. Kim, Vaibhav A. Vaidya, Krishnan Ravichandran, James W. Tschanz, Vivek De:
Conductance Modulation Techniques in Switched-Capacitor DC-DC Converter for Maximum-Efficiency Tracking and Ripple Mitigation in 22 nm Tri-Gate CMOS. IEEE J. Solid State Circuits 50(8): 1809-1819 (2015) - [c3]Pavan Kumar, Vaibhav A. Vaidya, Harish Krishnamurthy, Stephen T. Kim, George E. Matthew, Sheldon Weng, Bharani Thiruvengadam, Wayne Proefrock, Krishnan Ravichandran, Vivek De:
A 0.4V∼1V 0.2A/mm2 70% efficient 500MHz fully integrated digitally controlled 3-level buck voltage regulator with on-die high density MIM capacitor in 22nm tri-gate CMOS. CICC 2015: 1-4 - 2014
- [c2]Rinkle Jain, Stephen T. Kim, Vaibhav A. Vaidya, James W. Tschanz, Krishnan Ravichandran, Vivek De:
Conductance modulation techniques in switched-capacitor DC-DC converter for maximum-efficiency tracking and ripple mitigation in 22nm Tri-gate CMOS. CICC 2014: 1-4 - [c1]Harish Krishnamurthy, Vaibhav A. Vaidya, Pavan Kumar, George E. Matthew, Sheldon Weng, Bharani Thiruvengadam, Wayne Proefrock, Krishnan Ravichandran, Vivek De:
A 500 MHz, 68% efficient, fully on-die digitally controlled buck Voltage Regulator on 22nm Tri-Gate CMOS. VLSIC 2014: 1-2
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:08 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint