default search action
Cengiz Pehlevan
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c46]Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, Cengiz Pehlevan:
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit. ICLR 2024 - [c45]Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, Cengiz Pehlevan:
Grokking as the transition from lazy to rich training dynamics. ICLR 2024 - [c44]Blake Bordelon, Alexander B. Atanasov, Cengiz Pehlevan:
A Dynamical Model of Neural Scaling Laws. ICML 2024 - [i59]Blake Bordelon, Alexander B. Atanasov, Cengiz Pehlevan:
A Dynamical Model of Neural Scaling Laws. CoRR abs/2402.01092 (2024) - [i58]Alexander B. Atanasov, Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Scaling and renormalization in high-dimensional regression. CoRR abs/2405.00592 (2024) - [i57]Yue M. Lu, Mary I. Letey, Jacob A. Zavatone-Veth, Anindita Maiti, Cengiz Pehlevan:
Asymptotic theory of in-context learning by linear attention. CoRR abs/2405.11751 (2024) - [i56]William L. Tong, Cengiz Pehlevan:
MLPs Learn In-Context. CoRR abs/2405.15618 (2024) - [i55]Blake Bordelon, Hamza Tahir Chaudhry, Cengiz Pehlevan:
Infinite Limits of Multi-head Transformer Dynamics. CoRR abs/2405.15712 (2024) - [i54]Sheng Yang, Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Spectral regularization for adversarially-robust representation learning. CoRR abs/2405.17181 (2024) - [i53]Sheng Yang, Peihan Liu, Cengiz Pehlevan:
Convex Relaxation for Solving Large-Margin Classifiers in Hyperbolic Space. CoRR abs/2405.17198 (2024) - [i52]Alexander B. Atanasov, Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Risk and cross validation in ridge regression with correlated samples. CoRR abs/2408.04607 (2024) - [i51]Blake Bordelon, Alexander B. Atanasov, Cengiz Pehlevan:
How Feature Learning Can Improve Neural Scaling Laws. CoRR abs/2409.17858 (2024) - [i50]Elie Attias, Cengiz Pehlevan, Dina Obeid:
A Brain-Inspired Regularizer for Adversarial Robustness. CoRR abs/2410.03952 (2024) - [i49]Alexander B. Atanasov, Alexandru Meterez, James B. Simon, Cengiz Pehlevan:
The Optimization Landscape of SGD Across the Feature Learning Strength. CoRR abs/2410.04642 (2024) - [i48]Tanishq Kumar, Blake Bordelon, Cengiz Pehlevan, Venkatesh N. Murthy, Samuel J. Gershman:
Do Mice Grok? Glimpses of Hidden Progress During Overtraining in Sensory Cortex. CoRR abs/2411.03541 (2024) - [i47]Tanishq Kumar, Zachary Ankner, Benjamin Spector, Blake Bordelon, Niklas Muennighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Ré, Aditi Raghunathan:
Scaling Laws for Precision. CoRR abs/2411.04330 (2024) - 2023
- [j9]Abdulkadir Canatar, Evan Peters, Cengiz Pehlevan, Stefan M. Wild, Ruslan Shaydulin:
Bandwidth Enables Generalization in Quantum Kernel Models. Trans. Mach. Learn. Res. 2023 (2023) - [c43]Alexander B. Atanasov, Blake Bordelon, Sabarish Sainathan, Cengiz Pehlevan:
The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich Regimes. ICLR 2023 - [c42]Blake Bordelon, Cengiz Pehlevan:
The Influence of Learning Rule on Representation Dynamics in Wide Neural Networks. ICLR 2023 - [c41]Bariscan Bozkurt, Ates Isfendiyaroglu, Cengiz Pehlevan, Alper Tunga Erdogan:
Correlative Information Maximization Based Biologically Plausible Neural Networks for Correlated Source Separation. ICLR 2023 - [c40]David Lipshutz, Cengiz Pehlevan, Dmitri B. Chklovskii:
Interneurons accelerate learning dynamics in recurrent neural networks for statistical adaptation. ICLR 2023 - [c39]Nikhil Vyas, Alexander B. Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, Cengiz Pehlevan:
Feature-Learning Networks Are Consistent Across Widths At Realistic Scales. NeurIPS 2023 - [c38]Blake Bordelon, Paul Masset, Henry Kuo, Cengiz Pehlevan:
Loss Dynamics of Temporal Difference Reinforcement Learning. NeurIPS 2023 - [c37]Blake Bordelon, Cengiz Pehlevan:
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks. NeurIPS 2023 - [c36]Bariscan Bozkurt, Cengiz Pehlevan, Alper T. Erdogan:
Correlative Information Maximization: A Biologically Plausible Approach to Supervised Deep Neural Networks without Weight Symmetry. NeurIPS 2023 - [c35]Hamza Tahir Chaudhry, Jacob A. Zavatone-Veth, Dmitry Krotov, Cengiz Pehlevan:
Long Sequence Hopfield Memory. NeurIPS 2023 - [c34]Benjamin S. Ruben, Cengiz Pehlevan:
Learning Curves for Noisy Heterogeneous Feature-Subsampled Ridge Ensembles. NeurIPS 2023 - [c33]Jacob A. Zavatone-Veth, Paul Masset, William L. Tong, Joseph D. Zak, Venkatesh Murthy, Cengiz Pehlevan:
Neural Circuits for Fast Poisson Compressed Sensing in the Olfactory Bulb. NeurIPS 2023 - [c32]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Learning Curves for Deep Structured Gaussian Feature Models. NeurIPS 2023 - [i46]Jacob A. Zavatone-Veth, Sheng Yang, Julian A. Rubinfien, Cengiz Pehlevan:
Neural networks learn to magnify areas near decision boundaries. CoRR abs/2301.11375 (2023) - [i45]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Learning curves for deep structured Gaussian feature models. CoRR abs/2303.00564 (2023) - [i44]Blake Bordelon, Cengiz Pehlevan:
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks. CoRR abs/2304.03408 (2023) - [i43]Nikhil Vyas, Alexander B. Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, Cengiz Pehlevan:
Feature-Learning Networks Are Consistent Across Widths At Realistic Scales. CoRR abs/2305.18411 (2023) - [i42]Hamza Tahir Chaudhry, Jacob A. Zavatone-Veth, Dmitry Krotov, Cengiz Pehlevan:
Long Sequence Hopfield Memory. CoRR abs/2306.04532 (2023) - [i41]Bariscan Bozkurt, Cengiz Pehlevan, Alper T. Erdogan:
Correlative Information Maximization: A Biologically Plausible Approach to Supervised Deep Neural Networks without Weight Symmetry. CoRR abs/2306.04810 (2023) - [i40]Benjamin S. Ruben, Cengiz Pehlevan:
Learning Curves for Heterogeneous Feature-Subsampled Ridge Ensembles. CoRR abs/2307.03176 (2023) - [i39]Blake Bordelon, Paul Masset, Henry Kuo, Cengiz Pehlevan:
Dynamics of Temporal Difference Reinforcement Learning. CoRR abs/2307.04841 (2023) - [i38]Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, Cengiz Pehlevan:
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit. CoRR abs/2309.16620 (2023) - [i37]Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, Cengiz Pehlevan:
Grokking as the Transition from Lazy to Rich Training Dynamics. CoRR abs/2310.06110 (2023) - 2022
- [j8]David Lipshutz, Cengiz Pehlevan, Dmitri B. Chklovskii:
Biologically plausible single-layer networks for nonnegative independent component analysis. Biol. Cybern. 116(5): 557-568 (2022) - [j7]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
On Neural Network Kernels and the Storage Capacity Problem. Neural Comput. 34(5): 1136-1142 (2022) - [c31]Abdulkadir Canatar, Cengiz Pehlevan:
A Kernel Analysis of Feature Learning in Deep Neural Networks. Allerton 2022: 1-8 - [c30]Alexander B. Atanasov, Blake Bordelon, Cengiz Pehlevan:
Neural Networks as Kernel Learners: The Silent Alignment Effect. ICLR 2022 - [c29]Blake Bordelon, Cengiz Pehlevan:
Learning Curves for SGD on Structured Features. ICLR 2022 - [c28]Matthew Farrell, Blake Bordelon, Shubhendu Trivedi, Cengiz Pehlevan:
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views? ICLR 2022 - [c27]Blake Bordelon, Cengiz Pehlevan:
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks. NeurIPS 2022 - [c26]Bariscan Bozkurt, Cengiz Pehlevan, Alper T. Erdogan:
Biologically-Plausible Determinant Maximization Neural Networks for Blind Separation of Correlated Sources. NeurIPS 2022 - [c25]Paul Masset, Jacob A. Zavatone-Veth, J. Patrick Connor, Venkatesh Murthy, Cengiz Pehlevan:
Natural gradient enables fast sampling in spiking neural networks. NeurIPS 2022 - [i36]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
On neural network kernels and the storage capacity problem. CoRR abs/2201.04669 (2022) - [i35]Jacob A. Zavatone-Veth, William L. Tong, Cengiz Pehlevan:
Contrasting random and learned features in deep Bayesian linear regression. CoRR abs/2203.00573 (2022) - [i34]Blake Bordelon, Cengiz Pehlevan:
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks. CoRR abs/2205.09653 (2022) - [i33]Abdulkadir Canatar, Evan Peters, Cengiz Pehlevan, Stefan M. Wild, Ruslan Shaydulin:
Bandwidth Enables Generalization in Quantum Kernel Models. CoRR abs/2206.06686 (2022) - [i32]David Lipshutz, Cengiz Pehlevan, Dmitri B. Chklovskii:
Interneurons accelerate learning dynamics in recurrent neural networks for statistical adaptation. CoRR abs/2209.10634 (2022) - [i31]Bariscan Bozkurt, Cengiz Pehlevan, Alper T. Erdogan:
Biologically-Plausible Determinant Maximization Neural Networks for Blind Separation of Correlated Sources. CoRR abs/2209.12894 (2022) - [i30]Blake Bordelon, Cengiz Pehlevan:
The Influence of Learning Rule on Representation Dynamics in Wide Neural Networks. CoRR abs/2210.02157 (2022) - [i29]Bariscan Bozkurt, Ates Isfendiyaroglu, Cengiz Pehlevan, Alper T. Erdogan:
Correlative Information Maximization Based Biologically Plausible Neural Networks for Correlated Source Separation. CoRR abs/2210.04222 (2022) - [i28]Alexander B. Atanasov, Blake Bordelon, Sabarish Sainathan, Cengiz Pehlevan:
The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich Regimes. CoRR abs/2212.12147 (2022) - 2021
- [j6]Shanshan Qin, Nayantara Mudur, Cengiz Pehlevan:
Contrastive Similarity Matching for Supervised Learning. Neural Comput. 33(5): 1300-1328 (2021) - [c24]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Depth induces scale-averaging in overparameterized linear Bayesian neural networks. ACSCC 2021: 600-607 - [c23]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Exact marginal prior distributions of finite Bayesian neural networks. NeurIPS 2021: 3364-3375 - [c22]Abdulkadir Canatar, Blake Bordelon, Cengiz Pehlevan:
Out-of-Distribution Generalization in Kernel Regression. NeurIPS 2021: 12600-12612 - [c21]Trenton Bricken, Cengiz Pehlevan:
Attention Approximates Sparse Distributed Memory. NeurIPS 2021: 15301-15315 - [c20]Jacob A. Zavatone-Veth, Abdulkadir Canatar, Benjamin S. Ruben, Cengiz Pehlevan:
Asymptotics of representation learning in finite Bayesian neural networks. NeurIPS 2021: 24765-24777 - [i27]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Exact priors of finite neural networks. CoRR abs/2104.11734 (2021) - [i26]Jacob A. Zavatone-Veth, Abdulkadir Canatar, Cengiz Pehlevan:
Asymptotics of representation learning in finite Bayesian neural networks. CoRR abs/2106.00651 (2021) - [i25]Abdulkadir Canatar, Blake Bordelon, Cengiz Pehlevan:
Out-of-Distribution Generalization in Kernel Regression. CoRR abs/2106.02261 (2021) - [i24]Blake Bordelon, Cengiz Pehlevan:
Learning Curves for SGD on Structured Features. CoRR abs/2106.02713 (2021) - [i23]Matthew Farrell, Blake Bordelon, Shubhendu Trivedi, Cengiz Pehlevan:
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views? CoRR abs/2110.07472 (2021) - [i22]Alexander B. Atanasov, Blake Bordelon, Cengiz Pehlevan:
Neural Networks as Kernel Learners: The Silent Alignment Effect. CoRR abs/2111.00034 (2021) - [i21]Trenton Bricken, Cengiz Pehlevan:
Attention Approximates Sparse Distributed Memory. CoRR abs/2111.05498 (2021) - [i20]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Depth induces scale-averaging in overparameterized linear Bayesian neural networks. CoRR abs/2111.11954 (2021) - 2020
- [j5]Cengiz Pehlevan, Xinyuan Zhao, Anirvan M. Sengupta, Dmitri B. Chklovskii:
Neurons as Canonical Correlation Analyzers. Frontiers Comput. Neurosci. 14: 55 (2020) - [c19]Alper T. Erdogan, Cengiz Pehlevan:
Blind Bounded Source Separation Using Neural Networks with Local Learning Rules. ICASSP 2020: 3812-3816 - [c18]Blake Bordelon, Abdulkadir Canatar, Cengiz Pehlevan:
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks. ICML 2020: 1024-1034 - [c17]Yibo Jiang, Cengiz Pehlevan:
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders. ICML 2020: 4828-4838 - [c16]Qianyi Li, Cengiz Pehlevan:
Minimax Dynamics of Optimally Balanced Spiking Networks of Excitatory and Inhibitory Neurons. NeurIPS 2020 - [i19]Blake Bordelon, Abdulkadir Canatar, Cengiz Pehlevan:
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks. CoRR abs/2002.02561 (2020) - [i18]Shanshan Qin, Nayantara Mudur, Cengiz Pehlevan:
Supervised Deep Similarity Matching. CoRR abs/2002.10378 (2020) - [i17]Alper T. Erdogan, Cengiz Pehlevan:
Blind Bounded Source Separation Using Neural Networks with Local Learning Rules. CoRR abs/2004.05479 (2020) - [i16]Abdulkadir Canatar, Blake Bordelon, Cengiz Pehlevan:
Statistical Mechanics of Generalization in Kernel Regression. CoRR abs/2006.13198 (2020) - [i15]Yibo Jiang, Cengiz Pehlevan:
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders. CoRR abs/2006.16540 (2020) - [i14]Jacob A. Zavatone-Veth, Cengiz Pehlevan:
Activation function dependence of the storage capacity of treelike neural networks. CoRR abs/2007.11136 (2020)
2010 – 2019
- 2019
- [j4]Cengiz Pehlevan, Dmitri B. Chklovskii:
Neuroscience-Inspired Online Unsupervised Learning Algorithms: Artificial neural networks. IEEE Signal Process. Mag. 36(6): 88-96 (2019) - [c15]Harshvardhan Sikka, Weishun Zhong, Jun Yin, Cengiz Pehlevan:
A Closer Look at Disentangling in β-VAE. ACSSC 2019: 888-895 - [c14]Cengiz Pehlevan:
A Spiking Neural Network with Local Learning Rules Derived from Nonnegative Similarity Matching. ICASSP 2019: 7958-7962 - [c13]Dina Obeid, Hugo Ramambason, Cengiz Pehlevan:
Structured and Deep Similarity Matching via Structured and Deep Hebbian Networks. NeurIPS 2019: 15377-15386 - [i13]Cengiz Pehlevan:
A Spiking Neural Network with Local Learning Rules Derived From Nonnegative Similarity Matching. CoRR abs/1902.01429 (2019) - [i12]Cengiz Pehlevan, Dmitri B. Chklovskii:
Neuroscience-inspired online unsupervised learning algorithms. CoRR abs/1908.01867 (2019) - [i11]Dina Obeid, Hugo Ramambason, Cengiz Pehlevan:
Structured and Deep Similarity Matching via Structured and Deep Hebbian Networks. CoRR abs/1910.04958 (2019) - [i10]Harshvardhan Sikka, Weishun Zhong, Jun Yin, Cengiz Pehlevan:
A Closer Look at Disentangling in β-VAE. CoRR abs/1912.05127 (2019) - 2018
- [j3]Cengiz Pehlevan, Anirvan M. Sengupta, Dmitri B. Chklovskii:
Why Do Similarity Matching Objectives Lead to Hebbian/Anti-Hebbian Networks? Neural Comput. 30(1) (2018) - [c12]Victor Minden, Cengiz Pehlevan, Dmitri B. Chklovskii:
Biologically Plausible Online Principal Component Analysis Without Recurrent Neural Dynamics. ACSSC 2018: 104-111 - [c11]Andrea Giovannucci, Victor Minden, Cengiz Pehlevan, Dmitri B. Chklovskii:
Efficient Principal Subspace Projection of Streaming Data Through Fast Similarity Matching. IEEE BigData 2018: 1015-1022 - [c10]Anirvan M. Sengupta, Cengiz Pehlevan, Mariano Tepper, Alexander Genkin, Dmitri B. Chklovskii:
Manifold-tiling Localized Receptive Fields are Optimal in Similarity-preserving Neural Networks. NeurIPS 2018: 7080-7090 - [i9]Andrea Giovannucci, Victor Minden, Cengiz Pehlevan, Dmitri B. Chklovskii:
Efficient Principal Subspace Projection of Streaming Data Through Fast Similarity Matching. CoRR abs/1808.02083 (2018) - 2017
- [j2]Cengiz Pehlevan, Sreyas Mohan, Dmitri B. Chklovskii:
Blind Nonnegative Source Separation Using Biological Neural Networks. Neural Comput. 29(11) (2017) - [c9]Cengiz Pehlevan, Alexander Genkin, Dmitri B. Chklovskii:
A clustering neural network model of insect olfaction. ACSSC 2017: 593-600 - [c8]Cengiz Pehlevan, Anirvan M. Sengupta:
Resource-efficient perceptron has sparse synaptic weight distribution. SIU 2017: 1-4 - [i8]Cengiz Pehlevan, Anirvan M. Sengupta, Dmitri B. Chklovskii:
Adversarial synapses: Hebbian/anti-Hebbian learning optimizes min-max objectives. CoRR abs/1703.07914 (2017) - [i7]Cengiz Pehlevan, Sreyas Mohan, Dmitri B. Chklovskii:
Blind nonnegative source separation using biological neural networks. CoRR abs/1706.00382 (2017) - 2016
- [c7]Yuansi Chen, Cengiz Pehlevan, Dmitri B. Chklovskii:
Self-calibrating neural networks for dimensionality reduction. ACSSC 2016: 1488-1495 - [c6]Reza Abbasi-Asl, Cengiz Pehlevan, Bin Yu, Dmitri B. Chklovskii:
Do retinal ganglion cells project natural scenes to their principal subspace and whiten them? ACSSC 2016: 1641-1645 - [i6]Yuansi Chen, Cengiz Pehlevan, Dmitri B. Chklovskii:
Self-calibrating Neural Networks for Dimensionality Reduction. CoRR abs/1612.03480 (2016) - 2015
- [j1]Cengiz Pehlevan, Tao Hu, Dmitri B. Chklovskii:
A Hebbian/Anti-Hebbian Neural Network for Linear Subspace Learning: A Derivation from Multidimensional Scaling of Streaming Data. Neural Comput. 27(7): 1461-1495 (2015) - [c5]Cengiz Pehlevan, Dmitri B. Chklovskii:
Optimization theory of Hebbian/anti-Hebbian networks for PCA and whitening. Allerton 2015: 1458-1465 - [c4]Cengiz Pehlevan, Dmitri B. Chklovskii:
A Normative Theory of Adaptive Dimensionality Reduction in Neural Networks. NIPS 2015: 2269-2277 - [i5]Cengiz Pehlevan, Tao Hu, Dmitri B. Chklovskii:
A Hebbian/Anti-Hebbian Neural Network for Linear Subspace Learning: A Derivation from Multidimensional Scaling of Streaming Data. CoRR abs/1503.00669 (2015) - [i4]Cengiz Pehlevan, Dmitri B. Chklovskii:
A Hebbian/Anti-Hebbian Network Derived from Online Non-Negative Matrix Factorization Can Cluster and Discover Sparse Features. CoRR abs/1503.00680 (2015) - [i3]Tao Hu, Cengiz Pehlevan, Dmitri B. Chklovskii:
A Hebbian/Anti-Hebbian Network for Online Sparse Dictionary Learning Derived from Symmetric Matrix Factorization. CoRR abs/1503.00690 (2015) - [i2]Cengiz Pehlevan, Dmitri B. Chklovskii:
A Normative Theory of Adaptive Dimensionality Reduction in Neural Networks. CoRR abs/1511.09426 (2015) - [i1]Cengiz Pehlevan, Dmitri B. Chklovskii:
Optimization theory of Hebbian/anti-Hebbian networks for PCA and whitening. CoRR abs/1511.09468 (2015) - 2014
- [c3]Tao Hu, Cengiz Pehlevan, Dmitri B. Chklovskii:
A Hebbian/Anti-Hebbian network for online sparse dictionary learning derived from symmetric matrix factorization. ACSSC 2014: 613-619 - [c2]Cengiz Pehlevan, Dmitri B. Chklovskii:
A Hebbian/Anti-Hebbian network derived from online non-negative matrix factorization can cluster and discover sparse features. ACSSC 2014: 769-775 - 2013
- [c1]Tao Hu, Zaid J. Towfic, Cengiz Pehlevan, Alex V. Genkin, Dmitri B. Chklovskii:
A neuron as a signal processing device. ACSSC 2013: 362-366
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-07 01:15 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint