default search action
Subhro Das
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j5]Augustin-Alexandru Saucan, Subhro Das, Moe Z. Win:
Decentralized fused-learner architectures for Bayesian reinforcement learning. Artif. Intell. 331: 104094 (2024) - [c35]Wang Zhang, Ziwen Martin Ma, Subhro Das, Tsui-Wei Lily Weng, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
One Step Closer to Unbiased Aleatoric Uncertainty Estimation. AAAI 2024: 16857-16864 - [c34]Neil Thompson, Martin Fleming, Benny J. Tang, Anna M. Pastwa, Nicholas Borge, Brian C. Goehring, Subhro Das:
A Model for Estimating the Economic Costs of Computer Vision Systems That Use Deep Learning. AAAI 2024: 23012-23018 - [c33]Maohao Shen, Subhro Das, Kristjan H. Greenewald, Prasanna Sattigeri, Gregory W. Wornell, Soumya Ghosh:
Thermometer: Towards Universal Calibration for Large Language Models. ICML 2024 - [c32]Abhin Shah, Maohao Shen, Jongha Jon Ryu, Subhro Das, Prasanna Sattigeri, Yuheng Bu, Gregory W. Wornell:
Group Fairness with Uncertain Sensitive Attributes. ISIT 2024: 208-213 - [i34]Jongha Jon Ryu, Maohao Shen, Soumya Ghosh, Yuheng Bu, Prasanna Sattigeri, Subhro Das, Gregory W. Wornell:
Improved Evidential Deep Learning via a Mixture of Dirichlet Distributions. CoRR abs/2402.06160 (2024) - [i33]Maohao Shen, Subhro Das, Kristjan H. Greenewald, Prasanna Sattigeri, Gregory W. Wornell, Soumya Ghosh:
Thermometer: Towards Universal Calibration for Large Language Models. CoRR abs/2403.08819 (2024) - [i32]Hussein Mozannar, Valerie Chen, Mohammed Alsobay, Subhro Das, Sebastian Zhao, Dennis Wei, Manish Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, David A. Sontag:
The RealHumanEval: Evaluating Large Language Models' Abilities to Support Programmers. CoRR abs/2404.02806 (2024) - [i31]Anthony Baez, Wang Zhang, Ziwen Martin Ma, Subhro Das, Lam M. Nguyen, Luca Daniel:
Guaranteeing Conservation Laws with Projection in Physics-Informed Neural Networks. CoRR abs/2410.17445 (2024) - 2023
- [j4]Farzan Farnia, William W. Wang, Subhro Das, Ali Jadbabaie:
GAT-GMM: Generative Adversarial Training for Gaussian Mixture Models. SIAM J. Math. Data Sci. 5(1): 122-146 (2023) - [c31]Maohao Shen, Yuheng Bu, Prasanna Sattigeri, Soumya Ghosh, Subhro Das, Gregory W. Wornell:
Post-hoc Uncertainty Learning Using a Dirichlet Meta-Model. AAAI 2023: 9772-9781 - [c30]Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:
Who Should Predict? Exact Algorithms For Learning to Defer to Humans. AISTATS 2023: 10520-10545 - [c29]Maohao Shen, Soumya Ghosh, Prasanna Sattigeri, Subhro Das, Yuheng Bu, Gregory W. Wornell:
Reliable Gradient-free and Likelihood-free Prompt Tuning. EACL (Findings) 2023: 2371-2384 - [c28]Nhan H. Pham, Lam M. Nguyen, Jie Chen, Hoang Thanh Lam, Subhro Das, Tsui-Wei Weng:
Attacking c-MARL More Effectively: A Data Driven Approach. ICDM 2023: 1271-1276 - [c27]Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen, Tsui-Wei Weng:
Label-free Concept Bottleneck Models. ICLR 2023 - [c26]Wang Zhang, Tsui-Wei Weng, Subhro Das, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction. ICML 2023: 41694-41714 - [c25]Hussein Mozannar, Jimin J. Lee, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:
Effective Human-AI Teams via Learned Natural Language Rules and Onboarding. NeurIPS 2023 - [i30]Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:
Who Should Predict? Exact Algorithms For Learning to Defer to Humans. CoRR abs/2301.06197 (2023) - [i29]Wang Zhang, Tsui-Wei Weng, Subhro Das, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction. CoRR abs/2302.05783 (2023) - [i28]Abhin Shah, Maohao Shen, Jongha Jon Ryu, Subhro Das, Prasanna Sattigeri, Yuheng Bu, Gregory W. Wornell:
Group Fairness with Uncertainty in Sensitive Attributes. CoRR abs/2302.08077 (2023) - [i27]Amirhossein Reisizadeh, Haochuan Li, Subhro Das, Ali Jadbabaie:
Variance-reduced Clipping for Non-convex Optimization. CoRR abs/2303.00883 (2023) - [i26]Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen, Tsui-Wei Weng:
Label-Free Concept Bottleneck Models. CoRR abs/2304.06129 (2023) - [i25]Maohao Shen, Soumya Ghosh, Prasanna Sattigeri, Subhro Das, Yuheng Bu, Gregory W. Wornell:
Reliable Gradient-free and Likelihood-free Prompt Tuning. CoRR abs/2305.00593 (2023) - [i24]Yingying Li, Tianpeng Zhang, Subhro Das, Jeff S. Shamma, Na Li:
Non-asymptotic System Identification for Linear Systems with Nonlinear Policies. CoRR abs/2306.10369 (2023) - [i23]Hussein Mozannar, Jimin J. Lee, Dennis Wei, Prasanna Sattigeri, Subhro Das, David A. Sontag:
Effective Human-AI Teams via Learned Natural Language Rules and Onboarding. CoRR abs/2311.01007 (2023) - [i22]Quang Minh Nguyen, Lam M. Nguyen, Subhro Das:
Correlated Attention in Transformers for Multivariate Time Series. CoRR abs/2311.11959 (2023) - [i21]Wang Zhang, Ziwen Martin Ma, Subhro Das, Tsui-Wei Weng, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
One step closer to unbiased aleatoric uncertainty estimation. CoRR abs/2312.10469 (2023) - 2022
- [c24]Maysa Malfiza Garcia de Macedo, Wyatt Clarke, Eli Lucherini, Tyler Baldwin, Dilermando Queiroz Neto, Rogério Abreu de Paula, Subhro Das:
Practical Skills Demand Forecasting via Representation Learning of Temporal Dynamics. AIES 2022: 285-294 - [c23]Tyler Baldwin, Wyatt Clarke, Maysa M. Garcia de Macedo, Rogério de Paula, Subhro Das:
Better Skill-based Job Representations, Assessed via Job Transition Data. IEEE Big Data 2022: 2182-2185 - [c22]Saksham Gandhi, Raj Nagesh, Subhro Das:
Learning skills adjacency representations for optimized reskilling recommendations. IEEE Big Data 2022: 2253-2258 - [c21]Subhro Das:
On observability and optimal gain design for distributed linear filtering and prediction. EUSIPCO 2022: 1846-1850 - [c20]Haochuan Li, Farzan Farnia, Subhro Das, Ali Jadbabaie:
On Convergence of Gradient Descent Ascent: A Tight Local Analysis. ICML 2022: 12717-12740 - [c19]Abhin Shah, Yuheng Bu, Joshua K. Lee, Subhro Das, Rameswar Panda, Prasanna Sattigeri, Gregory W. Wornell:
Selective Regression under Fairness Criteria. ICML 2022: 19598-19615 - [c18]Jingzhao Zhang, Hongzhou Lin, Subhro Das, Suvrit Sra, Ali Jadbabaie:
Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity. ICML 2022: 26347-26361 - [c17]Subhro Das:
An Alternative Approach for Distributed Parameter Estimation Under Gaussian Settings. MLSP 2022: 1-6 - [i20]Nhan H. Pham, Lam M. Nguyen, Jie Chen, Hoang Thanh Lam, Subhro Das, Tsui-Wei Weng:
Evaluating Robustness of Cooperative MARL: A Model-based Approach. CoRR abs/2202.03558 (2022) - [i19]Subhro Das:
On observability and optimal gain design for distributed linear filtering and prediction. CoRR abs/2203.03521 (2022) - [i18]Subhro Das:
An alternative approach for distributed parameter estimation under Gaussian settings. CoRR abs/2204.08317 (2022) - [i17]Maysa M. Garcia de Macedo, Wyatt Clarke, Eli Lucherini, Tyler Baldwin, Dilermando Queiroz Neto, Rogério de Paula, Subhro Das:
Practical Skills Demand Forecasting via Representation Learning of Temporal Dynamics. CoRR abs/2205.09508 (2022) - [i16]Haochuan Li, Farzan Farnia, Subhro Das, Ali Jadbabaie:
On Convergence of Gradient Descent Ascent: A Tight Local Analysis. CoRR abs/2207.00957 (2022) - [i15]Maohao Shen, Yuheng Bu, Prasanna Sattigeri, Soumya Ghosh, Subhro Das, Gregory W. Wornell:
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model. CoRR abs/2212.07359 (2022) - 2021
- [c16]Yingying Li, Subhro Das, Na Li:
Online Optimal Control with Affine Constraints. AAAI 2021: 8527-8537 - [c15]Sarthak Chatterjee, Subhro Das, Sérgio Pequito:
IF: Iterative Fractional Optimization. ESANN 2021 - [c14]Nathan Hunt, Nathan Fulton, Sara Magliacane, Trong Nghia Hoang, Subhro Das, Armando Solar-Lezama:
Verifiably safe exploration for end-to-end reinforcement learning. HSCC 2021: 14:1-14:11 - [c13]Joshua K. Lee, Yuheng Bu, Deepta Rajan, Prasanna Sattigeri, Rameswar Panda, Subhro Das, Gregory W. Wornell:
Fair Selective Classification Via Sufficiency. ICML 2021: 6076-6086 - [c12]Augustin-Alexandru Saucan, Subhro Das, Moe Z. Win:
On Multisensor Activation Policies for Bernoulli Tracking. MILCOM 2021: 795-801 - [i14]Abhin Shah, Yuheng Bu, Joshua Ka-Wing Lee, Subhro Das, Rameswar Panda, Prasanna Sattigeri, Gregory W. Wornell:
Selective Regression Under Fairness Criteria. CoRR abs/2110.15403 (2021) - [i13]Yingying Li, Subhro Das, Jeff S. Shamma, Na Li:
Safe Adaptive Learning-based Control for Constrained Linear Quadratic Regulators with Regret Guarantees. CoRR abs/2111.00411 (2021) - 2020
- [c11]Subhro Das, Sebastian Steffen, Wyatt Clarke, Prabhat Reddy, Erik Brynjolfsson, Martin Fleming:
Learning Occupational Task-Shares Dynamics for the Future of Work. AIES 2020: 36-42 - [c10]Chirag Nagpal, Dennis Wei, Bhanukiran Vinzamuri, Monica Shekhar, Sara E. Berger, Subhro Das, Kush R. Varshney:
Interpretable subgroup discovery in treatment effect estimation with application to opioid prescribing guidelines. CHIL 2020: 19-29 - [c9]Subhro Das, Chandramouli Maduri, Ching-Hua Chen, Pei-Yun Sabrina Hsueh:
Learning Interpretable Behavioral Engagement for Care Management. MIE 2020: 1006-1010 - [i12]Subhro Das, Prasanth Lade, Soundar Srinivasan:
Model adaptation and unsupervised learning with non-stationary batch data under smooth concept drift. CoRR abs/2002.04094 (2020) - [i11]Subhro Das, Sebastian Steffen, Wyatt Clarke, Prabhat Reddy, Erik Brynjolfsson, Martin Fleming:
Learning Occupational Task-Shares Dynamics for the Future of Work. CoRR abs/2002.05655 (2020) - [i10]Jingzhao Zhang, Hongzhou Lin, Subhro Das, Suvrit Sra, Ali Jadbabaie:
Stochastic Optimization with Non-stationary Noise. CoRR abs/2006.04429 (2020) - [i9]Nathan Fulton, Nathan Hunt, Nghia Hoang, Subhro Das:
Formal Verification of End-to-End Learning in Cyber-Physical Systems: Progress and Challenges. CoRR abs/2006.09181 (2020) - [i8]Farzan Farnia, William Wang, Subhro Das, Ali Jadbabaie:
GAT-GMM: Generative Adversarial Training for Gaussian Mixture Models. CoRR abs/2006.10293 (2020) - [i7]Orlando Romero, Subhro Das, Pin-Yu Chen, Sérgio Pequito:
A Dynamical Systems Approach for Convergence of the Bayesian EM Algorithm. CoRR abs/2006.12690 (2020) - [i6]Nathan Hunt, Nathan Fulton, Sara Magliacane, Nghia Hoang, Subhro Das, Armando Solar-Lezama:
Verifiably Safe Exploration for End-to-End Reinforcement Learning. CoRR abs/2007.01223 (2020) - [i5]Yingying Li, Subhro Das, Na Li:
Online Optimal Control with Affine Constraints. CoRR abs/2010.04891 (2020)
2010 – 2019
- 2019
- [j3]Zhiguo Li, Subhro Das, James V. Codella, Tian Hao, Kun Lin, Chandramouli Maduri, Ching-Hua Chen:
An Adaptive, Data-Driven Personalized Advisor for Increasing Physical Activity. IEEE J. Biomed. Health Informatics 23(3): 999-1010 (2019) - [i4]Chirag Nagpal, Dennis Wei, Bhanukiran Vinzamuri, Monica Shekhar, Sara E. Berger, Subhro Das, Kush R. Varshney:
Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines. CoRR abs/1905.03297 (2019) - [i3]Subhro Das, Chandramouli Maduri, Ching-Hua Chen, Pei-Yun Sabrina Hsueh:
Learning Patient Engagement in Care Management: Performance vs. Interpretability. CoRR abs/1906.08339 (2019) - 2018
- [c8]Pei-Yun Sabrina Hsueh, Subhro Das, Chandramouli Maduri, Karie Kelly:
Learning to Personalize from Practice: A Real World Evidence Approach of Care Plan Personalization based on Differential Patient Behavioral Responses in Care Management Records. AMIA 2018 - 2017
- [j2]Subhro Das, José M. F. Moura:
Consensus+Innovations Distributed Kalman Filter With Optimized Gains. IEEE Trans. Signal Process. 65(2): 467-481 (2017) - [c7]Pei-Yun Sabrina Hsueh, Subhro Das:
Interpretable Clustering for Prototypical Patient Understanding: A Case Study of Hypertension and Depression Subgroup Behavioral Profiling in National Health and Nutrition Examination Survey Data. AMIA 2017 - [c6]Hung-Yang Chang, Zhiguo Li, Subhro Das, Tian Hao, Chandramouli Maduri, Chohreh Partovian, James V. Codella, Ching-Hua Chen:
A Personalized Pacing System for Real-Time Physical Activity Advising. CHASE 2017: 266-267 - [c5]Pei-Yun Sabrina Hsueh, Sanjoy Dey, Subhro Das, Thomas Wetter:
Making Sense of Patient-Generated Health Data for Interpretable Patient-Centered Care: The Transition from "More" to "Better". MedInfo 2017: 113-117 - [i2]Subhro Das, José M. F. Moura:
Distributed Estimation of Dynamic Fields over Multi-agent Networks. CoRR abs/1701.02710 (2017) - 2016
- [b1]Subhro Das:
Distributed Linear Filtering and Prediction of Time-varying Random Fields. Carnegie Mellon University, USA, 2016 - [i1]Subhro Das, José M. F. Moura:
Consensus+Innovations Distributed Kalman Filter with Optimized Gains. CoRR abs/1605.06096 (2016) - 2015
- [j1]Subhro Das, José M. F. Moura:
Distributed Kalman Filtering With Dynamic Observations Consensus. IEEE Trans. Signal Process. 63(17): 4458-4473 (2015) - 2013
- [c4]Subhro Das, José M. F. Moura:
Distributed Kalman filtering and Network Tracking Capacity. ACSSC 2013: 629-633 - [c3]Subhro Das, José M. F. Moura:
Distributed linear estimation of dynamic random fields. Allerton 2013: 1120-1125 - [c2]Subhro Das, José M. F. Moura:
Distributed Kalman filtering. EUSIPCO 2013: 1-5 - [c1]Subhro Das, José M. F. Moura:
Distributed state estimation in multi-agent networks. ICASSP 2013: 4246-4250
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-07 00:43 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint