default search action
James Hensman
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c29]Haolun Wu, Ye Yuan, Liana Mikaelyan, Alexander Meulemans, Xue Liu, James Hensman, Bhaskar Mitra:
Learning to Extract Structured Entities Using Language Models. EMNLP 2024: 6817-6834 - [c28]Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, James Hensman:
SliceGPT: Compress Large Language Models by Deleting Rows and Columns. ICLR 2024 - [i33]Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, James Hensman:
SliceGPT: Compress Large Language Models by Deleting Rows and Columns. CoRR abs/2401.15024 (2024) - [i32]Haolun Wu, Ye Yuan, Liana Mikaelyan, Alexander Meulemans, Xue Liu, James Hensman, Bhaskar Mitra:
Structured Entity Extraction Using Large Language Models. CoRR abs/2402.04437 (2024) - [i31]Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Martin Jaggi, Dan Alistarh, Torsten Hoefler, James Hensman:
QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs. CoRR abs/2404.00456 (2024) - [i30]Xi Wang, Liana Mikaelyan, Taketomo Isazawa, James Hensman:
KBLaM: Knowledge Base augmented Language Model. CoRR abs/2410.10450 (2024) - [i29]Tycho F. A. van der Ouderaa, Maximilian L. Croci, Agrin Hilmkil, James Hensman:
Pyramid Vector Quantization for LLMs. CoRR abs/2410.16926 (2024) - 2023
- [i28]Stefanos Eleftheriadis, Dominic Richards, James Hensman:
Sparse Gaussian Processes with Spherical Harmonic Features Revisited. CoRR abs/2303.15948 (2023) - [i27]Ouail Kitouni, Niklas Nolte, James Hensman, Bhaskar Mitra:
KBFormer: A Diffusion Model for Structured Entity Completion. CoRR abs/2312.05253 (2023) - 2022
- [c27]Xiaoyu Lu, Alexis Boukouvalas, James Hensman:
Additive Gaussian Processes Revisited. ICML 2022: 14358-14383 - [i26]Xiaoyu Lu, Alexis Boukouvalas, James Hensman:
Additive Gaussian Processes Revisited. CoRR abs/2206.09861 (2022) - 2021
- [j8]Nuha Bintayyash, Sokratia Georgaka, S. T. John, Sumon Ahmed, Alexis Boukouvalas, James Hensman, Magnus Rattray:
Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments. Bioinform. 37(21): 3788-3795 (2021) - [c26]Vincent Dutordoir, James Hensman, Mark van der Wilk, Carl Henrik Ek, Zoubin Ghahramani, Nicolas Durrande:
Deep Neural Networks as Point Estimates for Deep Gaussian Processes. NeurIPS 2021: 9443-9455 - [i25]Vincent Dutordoir, Hugh Salimbeni, Eric Hambro, John McLeod, Felix Leibfried, Artem Artemev, Mark van der Wilk, James Hensman, Marc Peter Deisenroth, S. T. John:
GPflux: A Library for Deep Gaussian Processes. CoRR abs/2104.05674 (2021) - [i24]Vincent Dutordoir, James Hensman, Mark van der Wilk, Carl Henrik Ek, Zoubin Ghahramani, Nicolas Durrande:
Deep Neural Networks as Point Estimates for Deep Gaussian Processes. CoRR abs/2105.04504 (2021) - 2020
- [c25]Vincent Dutordoir, Mark van der Wilk, Artem Artemev, James Hensman:
Bayesian Image Classification with Deep Convolutional Gaussian Processes. AISTATS 2020: 1529-1539 - [c24]Vincent Adam, Stefanos Eleftheriadis, Artem Artemev, Nicolas Durrande, James Hensman:
Doubly Sparse Variational Gaussian Processes. AISTATS 2020: 2874-2884 - [c23]Vincent Dutordoir, Nicolas Durrande, James Hensman:
Sparse Gaussian Processes with Spherical Harmonic Features. ICML 2020: 2793-2802 - [c22]Ayman Boustati, Sattar Vakili, James Hensman, S. T. John:
Amortized variance reduction for doubly stochastic objective. UAI 2020: 61-70 - [i23]Vincent Adam, Stefanos Eleftheriadis, Nicolas Durrande, Artem Artemev, James Hensman:
Doubly Sparse Variational Gaussian Processes. CoRR abs/2001.05363 (2020) - [i22]Mark van der Wilk, Vincent Dutordoir, S. T. John, Artem Artemev, Vincent Adam, James Hensman:
A Framework for Interdomain and Multioutput Gaussian Processes. CoRR abs/2003.01115 (2020) - [i21]Ayman Boustati, Sattar Vakili, James Hensman, S. T. John:
Amortized variance reduction for doubly stochastic objectives. CoRR abs/2003.04125 (2020) - [i20]Vincent Dutordoir, Nicolas Durrande, James Hensman:
Sparse Gaussian Processes with Spherical Harmonic Features. CoRR abs/2006.16649 (2020)
2010 – 2019
- 2019
- [c21]Mark van der Wilk, S. T. John, Artem Artemev, James Hensman:
Variational Gaussian Process Models without Matrix Inverses. AABI 2019: 1-9 - [c20]Nicolas Durrande, Vincent Adam, Lucas Bordeaux, Stefanos Eleftheriadis, James Hensman:
Banded Matrix Operators for Gaussian Markov Models in the Automatic Differentiation Era. AISTATS 2019: 2780-2789 - [c19]Alessandro Davide Ialongo, Mark van der Wilk, James Hensman, Carl Edward Rasmussen:
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models. ICML 2019: 2931-2940 - [c18]Hugh Salimbeni, Vincent Dutordoir, James Hensman, Marc Peter Deisenroth:
Deep Gaussian Processes with Importance-Weighted Variational Inference. ICML 2019: 5589-5598 - [c17]Christopher Nemeth, Fredrik Lindsten, Maurizio Filippone, James Hensman:
Pseudo-Extended Markov chain Monte Carlo. NeurIPS 2019: 4314-4324 - [i19]Vincent Dutordoir, Mark van der Wilk, Artem Artemev, Marcin Tomczak, James Hensman:
Translation Insensitivity for Deep Convolutional Gaussian Processes. CoRR abs/1902.05888 (2019) - [i18]Nicolas Durrande, Vincent Adam, Lucas Bordeaux, Stefanos Eleftheriadis, James Hensman:
Banded Matrix Operators for Gaussian Markov Models in the Automatic Differentiation Era. CoRR abs/1902.10078 (2019) - [i17]Hugh Salimbeni, Vincent Dutordoir, James Hensman, Marc Peter Deisenroth:
Deep Gaussian Processes with Importance-Weighted Variational Inference. CoRR abs/1905.05435 (2019) - [i16]Alessandro Davide Ialongo, Mark van der Wilk, James Hensman, Carl Edward Rasmussen:
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models. CoRR abs/1906.05828 (2019) - 2018
- [j7]Hossein Soleimani, James Hensman, Suchi Saria:
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction. IEEE Trans. Pattern Anal. Mach. Intell. 40(8): 1948-1963 (2018) - [c16]Hugh Salimbeni, Stefanos Eleftheriadis, James Hensman:
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models. AISTATS 2018: 689-697 - [c15]S. T. John, James Hensman:
Large-Scale Cox Process Inference using Variational Fourier Features. ICML 2018: 2367-2375 - [c14]Vincent Dutordoir, Hugh Salimbeni, James Hensman, Marc Peter Deisenroth:
Gaussian Process Conditional Density Estimation. NeurIPS 2018: 2391-2401 - [c13]Arno Solin, James Hensman, Richard E. Turner:
Infinite-Horizon Gaussian Processes. NeurIPS 2018: 3490-3499 - [c12]Mark van der Wilk, Matthias Bauer, S. T. John, James Hensman:
Learning Invariances using the Marginal Likelihood. NeurIPS 2018: 9960-9970 - [i15]Hugh Salimbeni, Stefanos Eleftheriadis, James Hensman:
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models. CoRR abs/1803.09151 (2018) - [i14]S. T. John, James Hensman:
Large-Scale Cox Process Inference using Variational Fourier Features. CoRR abs/1804.01016 (2018) - [i13]Mark van der Wilk, Matthias Bauer, S. T. John, James Hensman:
Learning Invariances using the Marginal Likelihood. CoRR abs/1808.05563 (2018) - [i12]Vincent Dutordoir, Hugh Salimbeni, Marc Peter Deisenroth, James Hensman:
Gaussian Process Conditional Density Estimation. CoRR abs/1810.12750 (2018) - [i11]Arno Solin, James Hensman, Richard E. Turner:
Infinite-Horizon Gaussian Processes. CoRR abs/1811.06588 (2018) - [i10]Alessandro Davide Ialongo, Mark van der Wilk, James Hensman, Carl Edward Rasmussen:
Non-Factorised Variational Inference in Dynamical Systems. CoRR abs/1812.06067 (2018) - 2017
- [j6]Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, James Hensman:
GPflow: A Gaussian Process Library using TensorFlow. J. Mach. Learn. Res. 18: 40:1-40:6 (2017) - [j5]James Hensman, Nicolas Durrande, Arno Solin:
Variational Fourier Features for Gaussian Processes. J. Mach. Learn. Res. 18: 151:1-151:52 (2017) - [c11]Mark van der Wilk, Carl Edward Rasmussen, James Hensman:
Convolutional Gaussian Processes. NIPS 2017: 2849-2858 - [c10]Stefanos Eleftheriadis, Tom Nicholson, Marc Peter Deisenroth, James Hensman:
Identification of Gaussian Process State Space Models. NIPS 2017: 5309-5319 - [i9]Hossein Soleimani, James Hensman, Suchi Saria:
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction. CoRR abs/1708.04757 (2017) - [i8]Mark van der Wilk, Carl Edward Rasmussen, James Hensman:
Convolutional Gaussian Processes. CoRR abs/1709.01894 (2017) - 2016
- [j4]Nicolas Durrande, James Hensman, Magnus Rattray, Neil D. Lawrence:
Detecting periodicities with Gaussian processes. PeerJ Comput. Sci. 2: e50 (2016) - [c9]Alexander G. de G. Matthews, James Hensman, Richard E. Turner, Zoubin Ghahramani:
On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes. AISTATS 2016: 231-239 - [c8]Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:
Chained Gaussian Processes. AISTATS 2016: 1431-1440 - [c7]Vincent Adam, James Hensman, Maneesh Sahani:
Scalable transformed additive signal decomposition by non-conjugate Gaussian process inference. MLSP 2016: 1-6 - [i7]Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:
Chained Gaussian Processes. CoRR abs/1604.05263 (2016) - [i6]Nicolas Durrande, James Hensman, Magnus Rattray, Neil D. Lawrence:
Detecting periodicities with Gaussian processes. PeerJ Prepr. 4: e1743 (2016) - 2015
- [j3]James Hensman, Panagiotis Papastamoulis, Peter Glaus, Antti Honkela, Magnus Rattray:
Fast and accurate approximate inference of transcript expression from RNA-seq data. Bioinform. 31(24): 3881-3889 (2015) - [j2]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast Nonparametric Clustering of Structured Time-Series. IEEE Trans. Pattern Anal. Mach. Intell. 37(2): 383-393 (2015) - [c6]James Hensman, Alexander G. de G. Matthews, Zoubin Ghahramani:
Scalable Variational Gaussian Process Classification. AISTATS 2015 - [c5]James Hensman, Alexander G. de G. Matthews, Maurizio Filippone, Zoubin Ghahramani:
MCMC for Variationally Sparse Gaussian Processes. NIPS 2015: 1648-1656 - [i5]Zhenwen Dai, James Hensman, Neil D. Lawrence:
Spike and Slab Gaussian Process Latent Variable Models. CoRR abs/1505.02434 (2015) - 2014
- [c4]Ricardo Andrade Pacheco, James Hensman, Max Zwiessele, Neil D. Lawrence:
Hybrid Discriminative-Generative Approach with Gaussian Processes. AISTATS 2014: 47-56 - [c3]James Hensman, Max Zwiessele, Neil D. Lawrence:
Tilted Variational Bayes. AISTATS 2014: 356-364 - [i4]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast variational inference for nonparametric clustering of structured time-series. CoRR abs/1401.1605 (2014) - [i3]Zhenwen Dai, Andreas C. Damianou, James Hensman, Neil D. Lawrence:
Gaussian Process Models with Parallelization and GPU acceleration. CoRR abs/1410.4984 (2014) - 2013
- [j1]James Hensman, Neil D. Lawrence, Magnus Rattray:
Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinform. 14: 252 (2013) - [c2]James Hensman, Nicoló Fusi, Neil D. Lawrence:
Gaussian Processes for Big Data. UAI 2013 - [i2]James Hensman, Nicoló Fusi, Neil D. Lawrence:
Gaussian Processes for Big Data. CoRR abs/1309.6835 (2013) - 2012
- [c1]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast Variational Inference in the Conjugate Exponential Family. NIPS 2012: 2897-2905 - [i1]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast Variational Inference in the Conjugate Exponential Family. CoRR abs/1206.5162 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:10 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint