default search action
26th ICML 2009: Montreal, Quebec, Canada
- Andrea Pohoreckyj Danyluk, Léon Bottou, Michael L. Littman:
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009. ACM International Conference Proceeding Series 382, ACM 2009, ISBN 978-1-60558-516-1 - Ryan Prescott Adams, Zoubin Ghahramani:
Archipelago: nonparametric Bayesian semi-supervised learning. 1-8 - Ryan Prescott Adams, Iain Murray, David J. C. MacKay:
Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. 9-16 - Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti:
Route kernels for trees. 17-24 - David Andrzejewski, Xiaojin Zhu, Mark Craven:
Incorporating domain knowledge into topic modeling via Dirichlet Forest priors. 25-32 - Raphaël Bailly, François Denis, Liva Ralaivola:
Grammatical inference as a principal component analysis problem. 33-40 - Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston:
Curriculum learning. 41-48 - Alina Beygelzimer, Sanjoy Dasgupta, John Langford:
Importance weighted active learning. 49-56 - Guillaume Bouchard, Onno Zoeter:
Split variational inference. 57-64 - Abdeslam Boularias, Brahim Chaib-draa:
Predictive representations for policy gradient in POMDPs. 65-72 - Craig Boutilier, Kevin Regan, Paolo Viappiani:
Online feature elicitation in interactive optimization. 73-80 - Thomas Bühler, Matthias Hein:
Spectral clustering based on the graph p-Laplacian. 81-88 - Michael C. Burl, Esther Wang:
Active learning for directed exploration of complex systems. 89-96 - Alberto Giovanni Busetto, Cheng Soon Ong, Joachim M. Buhmann:
Optimized expected information gain for nonlinear dynamical systems. 97-104 - Deng Cai, Xuanhui Wang, Xiaofei He:
Probabilistic dyadic data analysis with local and global consistency. 105-112 - Cassio P. de Campos, Zhi Zeng, Qiang Ji:
Structure learning of Bayesian networks using constraints. 113-120 - Nicolò Cesa-Bianchi, Claudio Gentile, Francesco Orabona:
Robust bounds for classification via selective sampling. 121-128 - Kamalika Chaudhuri, Sham M. Kakade, Karen Livescu, Karthik Sridharan:
Multi-view clustering via canonical correlation analysis. 129-136 - Jianhui Chen, Lei Tang, Jun Liu, Jieping Ye:
A convex formulation for learning shared structures from multiple tasks. 137-144 - Yihua Chen, Maya R. Gupta, Benjamin Recht:
Learning kernels from indefinite similarities. 145-152 - Chih-Chieh Cheng, Fei Sha, Lawrence K. Saul:
Matrix updates for perceptron training of continuous density hidden Markov models. 153-160 - Weiwei Cheng, Jens C. Huhn, Eyke Hüllermeier:
Decision tree and instance-based learning for label ranking. 161-168 - Youngmin Cho, Lawrence K. Saul:
Learning dictionaries of stable autoregressive models for audio scene analysis. 169-176 - Myung Jin Choi, Venkat Chandrasekaran, Alan S. Willsky:
Exploiting sparse Markov and covariance structure in multiresolution models. 177-184 - Stéphan Clémençon, Nicolas Vayatis:
Nonparametric estimation of the precision-recall curve. 185-192 - Wenyuan Dai, Ou Jin, Gui-Rong Xue, Qiang Yang, Yong Yu:
EigenTransfer: a unified framework for transfer learning. 193-200 - Samuel I. Daitch, Jonathan A. Kelner, Daniel A. Spielman:
Fitting a graph to vector data. 201-208 - Hal Daumé III:
Unsupervised search-based structured prediction. 209-216 - Jesse Davis, Pedro M. Domingos:
Deep transfer via second-order Markov logic. 217-224 - Marc Peter Deisenroth, Marco F. Huber, Uwe D. Hanebeck:
Analytic moment-based Gaussian process filtering. 225-232 - Ofer Dekel, Ohad Shamir:
Good learners for evil teachers. 233-240 - Meghana Deodhar, Gunjan Gupta, Joydeep Ghosh, Hyuk Cho, Inderjit S. Dhillon:
A scalable framework for discovering coherent co-clusters in noisy data. 241-248 - Carlos Diuk, Lihong Li, Bethany R. Leffler:
The adaptive k-meteorologists problem and its application to structure learning and feature selection in reinforcement learning. 249-256 - Chuong B. Do, Quoc V. Le, Chuan-Sheng Foo:
Proximal regularization for online and batch learning. 257-264 - Trinh Minh Tri Do, Thierry Artières:
Large margin training for hidden Markov models with partially observed states. 265-272 - Finale Doshi-Velez, Zoubin Ghahramani:
Accelerated sampling for the Indian Buffet Process. 273-280 - Gabriel Doyle, Charles Elkan:
Accounting for burstiness in topic models. 281-288 - Lixin Duan, Ivor W. Tsang, Dong Xu, Tat-Seng Chua:
Domain adaptation from multiple sources via auxiliary classifiers. 289-296 - John C. Duchi, Yoram Singer:
Boosting with structural sparsity. 297-304 - Alireza Farhangfar, Russell Greiner, Csaba Szepesvári:
Learning to segment from a few well-selected training images. 305-312 - M. Julia Flores, José A. Gámez, Ana M. Martínez, José Miguel Puerta:
GAODE and HAODE: two proposals based on AODE to deal with continuous variables. 313-320 - Chuan-Sheng Foo, Chuong B. Do, Andrew Y. Ng:
A majorization-minimization algorithm for (multiple) hyperparameter learning. 321-328 - Wenjie Fu, Le Song, Eric P. Xing:
Dynamic mixed membership blockmodel for evolving networks. 329-336 - Rahul Garg, Rohit Khandekar:
Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property. 337-344 - Roman Garnett, Michael A. Osborne, Stephen J. Roberts:
Sequential Bayesian prediction in the presence of changepoints. 345-352 - Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand:
PAC-Bayesian learning of linear classifiers. 353-360 - Fabian Gieseke, Tapio Pahikkala, Oliver Kramer:
Fast evolutionary maximum margin clustering. 361-368 - Eduardo Rodrigues Gomes, Ryszard Kowalczyk:
Dynamic analysis of multiagent Q-learning with ε-greedy exploration. 369-376 - John Guiver, Edward Lloyd Snelson:
Bayesian inference for Plackett-Luce ranking models. 377-384 - Peter Haider, Tobias Scheffer:
Bayesian clustering for email campaign detection. 385-392 - Elad Hazan, C. Seshadhri:
Efficient learning algorithms for changing environments. 393-400 - Verena Heidrich-Meisner, Christian Igel:
Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search. 401-408 - Thibault Helleputte, Pierre Dupont:
Partially supervised feature selection with regularized linear models. 409-416 - Junzhou Huang, Tong Zhang, Dimitris N. Metaxas:
Learning with structured sparsity. 417-424 - Tzu-Kuo Huang, Jeff G. Schneider:
Learning linear dynamical systems without sequence information. 425-432 - Laurent Jacob, Guillaume Obozinski, Jean-Philippe Vert:
Group lasso with overlap and graph lasso. 433-440 - Tony Jebara, Jun Wang, Shih-Fu Chang:
Graph construction and b-matching for semi-supervised learning. 441-448 - Nikolay Jetchev, Marc Toussaint:
Trajectory prediction: learning to map situations to robot trajectories. 449-456 - Shuiwang Ji, Jieping Ye:
An accelerated gradient method for trace norm minimization. 457-464 - (Withdrawn) A novel lexicalized HMM-based learning framework for web opinion mining. 465-472
- Jason K. Johnson, Vladimir Y. Chernyak, Michael Chertkov:
Orbit-product representation and correction of Gaussian belief propagation. 473-480 - Hetunandan Kamisetty, Christopher James Langmead:
A Bayesian approach to protein model quality assessment. 481-488 - Nikolaos Karampatziakis, Dexter Kozen:
Learning prediction suffix trees with Winnow. 489-496 - Balázs Kégl, Róbert Busa-Fekete:
Boosting products of base classifiers. 497-504 - Stanley Kok, Pedro M. Domingos:
Learning Markov logic network structure via hypergraph lifting. 505-512 - J. Zico Kolter, Andrew Y. Ng:
Near-Bayesian exploration in polynomial time. 513-520 - J. Zico Kolter, Andrew Y. Ng:
Regularization and feature selection in least-squares temporal difference learning. 521-528 - Risi Kondor, Nino Shervashidze, Karsten M. Borgwardt:
The graphlet spectrum. 529-536 - Wojciech Kotlowski, Roman Slowinski:
Rule learning with monotonicity constraints. 537-544 - Matthieu Kowalski, Marie Szafranski, Liva Ralaivola:
Multiple indefinite kernel learning with mixed norm regularization. 545-552 - Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:
On sampling-based approximate spectral decomposition. 553-560 - Jérôme Kunegis, Andreas Lommatzsch:
Learning spectral graph transformations for link prediction. 561-568 - Ondrej Kuzelka, Filip Zelezný:
Block-wise construction of acyclic relational features with monotone irreducibility and relevancy properties. 569-576 - Yanyan Lan, Tie-Yan Liu, Zhiming Ma, Hang Li:
Generalization analysis of listwise learning-to-rank algorithms. 577-584 - Tobias Lang, Marc Toussaint:
Approximate inference for planning in stochastic relational worlds. 585-592 - John Langford, Ruslan Salakhutdinov, Tong Zhang:
Learning nonlinear dynamic models. 593-600 - Neil D. Lawrence, Raquel Urtasun:
Non-linear matrix factorization with Gaussian processes. 601-608 - Honglak Lee, Roger B. Grosse, Rajesh Ranganath, Andrew Y. Ng:
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. 609-616 - Bin Li, Qiang Yang, Xiangyang Xue:
Transfer learning for collaborative filtering via a rating-matrix generative model. 617-624 - Ping Li:
ABC-boost: adaptive base class boost for multi-class classification. 625-632 - Yufeng Li, James T. Kwok, Zhi-Hua Zhou:
Semi-supervised learning using label mean. 633-640 - Percy Liang, Michael I. Jordan, Dan Klein:
Learning from measurements in exponential families. 641-648 - Han Liu, Mark Palatucci, Jian Zhang:
Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. 649-656 - Jun Liu, Jieping Ye:
Efficient Euclidean projections in linear time. 657-664 - Yan Liu, Alexandru Niculescu-Mizil, Wojciech Gryc:
Topic-link LDA: joint models of topic and author community. 665-672 - Zhengdong Lu, Prateek Jain, Inderjit S. Dhillon:
Geometry-aware metric learning. 673-680 - Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
Identifying suspicious URLs: an application of large-scale online learning. 681-688 - Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro:
Online dictionary learning for sparse coding. 689-696 - Takaki Makino:
Proto-predictive representation of states with simple recurrent temporal-difference networks. 697-704 - Benjamin M. Marlin, Kevin P. Murphy:
Sparse Gaussian graphical models with unknown block structure. 705-712 - André F. T. Martins, Noah A. Smith, Eric P. Xing:
Polyhedral outer approximations with application to natural language parsing. 713-720 - Brian McFee, Gert R. G. Lanckriet:
Partial order embedding with multiple kernels. 721-728 - Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, Markus Püschel:
Bandit-based optimization on graphs with application to library performance tuning. 729-736 - Hossein Mobahi, Ronan Collobert, Jason Weston:
Deep learning from temporal coherence in video. 737-744 - Joris M. Mooij, Dominik Janzing, Jonas Peters, Bernhard Schölkopf:
Regression by dependence minimization and its application to causal inference in additive noise models. 745-752 - Gerhard Neumann, Wolfgang Maass, Jan Peters:
Learning complex motions by sequencing simpler motion templates. 753-760 - Hannes Nickisch, Matthias W. Seeger:
Convex variational Bayesian inference for large scale generalized linear models. 761-768 - Sebastian Nowozin, Stefanie Jegelka:
Solution stability in linear programming relaxations: graph partitioning and unsupervised learning. 769-776 - John W. Paisley, Lawrence Carin:
Nonparametric factor analysis with beta process priors. 777-784 - Wei Pan, Lorenzo Torresani:
Unsupervised hierarchical modeling of locomotion styles. 785-792 - Jason Pazis, Michail G. Lagoudakis:
Binary action search for learning continuous-action control policies. 793-800 - Jonas Peters, Dominik Janzing, Arthur Gretton, Bernhard Schölkopf:
Detecting the direction of causal time series. 801-808 - Marek Petrik, Shlomo Zilberstein:
Constraint relaxation in approximate linear programs. 809-816 - Nils Plath, Marc Toussaint, Shinichi Nakajima:
Multi-class image segmentation using conditional random fields and global classification. 817-824 - Barnabás Póczos, Yasin Abbasi-Yadkori, Csaba Szepesvári, Russell Greiner, Nathan R. Sturtevant:
Learning when to stop thinking and do something! 825-832 - Duangmanee Putthividhya, Hagai Thomas Attias, Srikantan S. Nagarajan:
Independent factor topic models. 833-840 - Guo-Jun Qi, Jinhui Tang, Zheng-Jun Zha, Tat-Seng Chua, Hong-Jiang Zhang:
An efficient sparse metric learning in high-dimensional space via l1-penalized log-determinant regularization. 841-848 - Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang, Lide Wu:
Sparse higher order conditional random fields for improved sequence labeling. 849-856 - Ariadna Quattoni, Xavier Carreras, Michael Collins, Trevor Darrell:
An efficient projection for l1,infinity regularization. 857-864 - Milos Radovanovic, Alexandros Nanopoulos, Mirjana Ivanovic:
Nearest neighbors in high-dimensional data: the emergence and influence of hubs. 865-872 - Rajat Raina, Anand Madhavan, Andrew Y. Ng:
Large-scale deep unsupervised learning using graphics processors. 873-880 - Sudhir Raman, Thomas J. Fuchs, Peter J. Wild, Edgar Dahl, Volker Roth:
The Bayesian group-Lasso for analyzing contingency tables. 881-888 - Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Anna K. Jerebko, Charles Florin, Gerardo Hermosillo Valadez, Luca Bogoni, Linda Moy:
Supervised learning from multiple experts: whom to trust when everyone lies a bit. 889-896 - Mark D. Reid, Robert C. Williamson:
Surrogate regret bounds for proper losses. 897-904 - Sushmita Roy, Terran Lane, Margaret Werner-Washburne:
Learning structurally consistent undirected probabilistic graphical models. 905-912 - Stefan Rüping:
Ranking interesting subgroups. 913-920 - Mikkel N. Schmidt:
Function factorization using warped Gaussian processes. 921-928 - Shai Shalev-Shwartz, Ambuj Tewari:
Stochastic methods for l1 regularized loss minimization. 929-936 - Blake Shaw, Tony Jebara:
Structure preserving embedding. 937-944 - David Silver, Gerald Tesauro:
Monte-Carlo simulation balancing. 945-952 - Vikas Sindhwani, Prem Melville, Richard D. Lawrence:
Uncertainty sampling and transductive experimental design for active dual supervision. 953-960 - Le Song, Jonathan Huang, Alexander J. Smola, Kenji Fukumizu:
Hilbert space embeddings of conditional distributions with applications to dynamical systems. 961-968 - Andreas P. Streich, Mario Frank, David A. Basin, Joachim M. Buhmann:
Multi-assignment clustering for Boolean data. 969-976 - Liang Sun, Shuiwang Ji, Jieping Ye:
A least squares formulation for a class of generalized eigenvalue problems in machine learning. 977-984 - Ilya Sutskever:
A simpler unified analysis of budget perceptrons. 985-992 - Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvári, Eric Wiewiora:
Fast gradient-descent methods for temporal-difference learning with linear function approximation. 993-1000 - Istvan Szita, András Lörincz:
Optimistic initialization and greediness lead to polynomial time learning in factored MDPs. 1001-1008 - Arthur Szlam, Guillermo Sapiro:
Discriminative k-metrics. 1009-1016 - Gavin Taylor, Ronald Parr:
Kernelized value function approximation for reinforcement learning. 1017-1024 - Graham W. Taylor, Geoffrey E. Hinton:
Factored conditional restricted Boltzmann Machines for modeling motion style. 1025-1032 - Tijmen Tieleman, Geoffrey E. Hinton:
Using fast weights to improve persistent contrastive divergence. 1033-1040 - Robert E. Tillman:
Structure learning with independent non-identically distributed data. 1041-1048 - Marc Toussaint:
Robot trajectory optimization using approximate inference. 1049-1056 - Nicolas Usunier, David Buffoni, Patrick Gallinari:
Ranking with ordered weighted pairwise classification. 1057-1064 - Manik Varma, Bodla Rakesh Babu:
More generality in efficient multiple kernel learning. 1065-1072 - Xuan Vinh Nguyen, Julien Epps, James Bailey:
Information theoretic measures for clusterings comparison: is a correction for chance necessary? 1073-1080 - Nikos Vlassis, Marc Toussaint:
Model-free reinforcement learning as mixture learning. 1081-1088 - Maksims Volkovs, Richard S. Zemel:
BoltzRank: learning to maximize expected ranking gain. 1089-1096 - Kiri L. Wagstaff, Benjamin J. Bornstein:
K-means in space: a radiation sensitivity evaluation. 1097-1104 - Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, David M. Mimno:
Evaluation methods for topic models. 1105-1112 - Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, Josh Attenberg:
Feature hashing for large scale multitask learning. 1113-1120 - Max Welling:
Herding dynamical weights to learn. 1121-1128 - Frank D. Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James, Yee Whye Teh:
A stochastic memoizer for sequence data. 1129-1136 - Linli Xu, Martha White, Dale Schuurmans:
Optimal reverse prediction: a unified perspective on supervised, unsupervised and semi-supervised learning. 1137-1144 - Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, Irwin King:
Non-monotonic feature selection. 1145-1152 - Liu Yang, Rong Jin, Jieping Ye:
Online learning by ellipsoid method. 1153-1160 - Yi Sun, Daan Wierstra, Tom Schaul, Jürgen Schmidhuber:
Stochastic search using the natural gradient. 1161-1168 - Chun-Nam John Yu, Thorsten Joachims:
Learning structural SVMs with latent variables. 1169-1176 - Jia Yuan Yu, Shie Mannor:
Piecewise-stationary bandit problems with side observations. 1177-1184 - Kai Yu, John D. Lafferty, Shenghuo Zhu, Yihong Gong:
Large-scale collaborative prediction using a nonparametric random effects model. 1185-1192 - Xiaotong Yuan, Bao-Gang Hu:
Robust feature extraction via information theoretic learning. 1193-1200 - Yisong Yue, Thorsten Joachims:
Interactively optimizing information retrieval systems as a dueling bandits problem. 1201-1208 - Alan L. Yuille, Songfeng Zheng:
Compositional noisy-logical learning. 1209-1216 - Peng Zang, Peng Zhou, David Minnen, Charles Lee Isbell Jr.:
Discovering options from example trajectories. 1217-1224 - De-Chuan Zhan, Ming Li, Yufeng Li, Zhi-Hua Zhou:
Learning instance specific distances using metric propagation. 1225-1232 - Kai Zhang, James T. Kwok, Bahram Parvin:
Prototype vector machine for large scale semi-supervised learning. 1233-1240 - Wei Zhang, Akshat Surve, Xiaoli Z. Fern, Thomas G. Dietterich:
Learning non-redundant codebooks for classifying complex objects. 1241-1248 - Zhi-Hua Zhou, Yu-Yin Sun, Yufeng Li:
Multi-instance learning by treating instances as non-I.I.D. samples. 1249-1256 - Jun Zhu, Amr Ahmed, Eric P. Xing:
MedLDA: maximum margin supervised topic models for regression and classification. 1257-1264 - Jun Zhu, Eric P. Xing:
On primal and dual sparsity of Markov networks. 1265-1272 - Jinfeng Zhuang, Ivor W. Tsang, Steven C. H. Hoi:
SimpleNPKL: simple non-parametric kernel learning. 1273-1280 - Corinna Cortes:
Invited talk: Can learning kernels help performance? 1 - Yoav Freund:
Invited talk: Drifting games, boosting and online learning. 2 - John Mark Agosta, Russell G. Almond, Dennis M. Buede, Marek J. Druzdzel, Judy Goldsmith, Silja Renooij:
Workshop summary: Seventh annual workshop on Bayes applications. 3 - Robert F. Murphy, Chun-Nan Hsu, Loris Nanni:
Workshop summary: Automated interpretation and modelling of cell images. 4 - Kai Yu, Ruslan Salakhutdinov, Yann LeCun, Geoffrey E. Hinton, Yoshua Bengio:
Workshop summary: Workshop on learning feature hierarchies. 5 - David Wingate, Carlos Diuk, Lihong Li, Matthew Taylor, Jordan Frank:
Workshop summary: Results of the 2009 reinforcement learning competition. 6 - Chris Drummond, Nathalie Japkowicz, William Klement, Sofus A. Macskassy:
Workshop summary: The fourth workshop on evaluation methods for machine learning. 7 - Jean-Yves Audibert, Peter Auer, Alessandro Lazaric, Rémi Munos, Daniil Ryabko, Csaba Szepesvári:
Workshop summary: On-line learning with limited feedback. 8 - Matthias W. Seeger, Suvrit Sra, John P. Cunningham:
Workshop summary: Numerical mathematics in machine learning. 9 - Özgür Simsek:
Workshop summary: Abstraction in reinforcement learning. 10 - Douglas Eck, Dan Ellis, Philippe Hamel:
Workshop summary: Sparse methods for music audio. 11 - Alina Beygelzimer, John Langford, Bianca Zadrozny:
Tutorial summary: Reductions in machine learning. 12 - Eyal Even-Dar, Vahab S. Mirrokni:
Tutorial summary: Convergence of natural dynamics to equilibria. 13 - Volker Tresp, Kai Yu:
Tutorial summary: Learning with dependencies between several response variables. 14 - Manfred K. Warmuth, S. V. N. Vishwanathan:
Tutorial summary: Survey of boosting from an optimization perspective. 15 - Yael Niv:
Tutorial summary: The neuroscience of reinforcement learning. 16 - Paul N. Bennett, Misha Bilenko, Kevyn Collins-Thompson:
Tutorial summary: Machine learning in IR: recent successes and new opportunities. 17 - Sanjoy Dasgupta, John Langford:
Tutorial summary: Active learning. 18 - Jure Leskovec:
Tutorial summary: Large social and information networks: opportunities for ML. 19 - Noah A. Smith:
Tutorial summary: Structured prediction for natural language processing. 20
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.