default search action
Krisztián Búza
Person information
- affiliation: Hungarian Academy of Sciences, Budapest, Hungary
- affiliation: Semmelweis University, Budapest, Hungary
- affiliation: University of Hildesheim, Germany
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j13]Kamil Ksiazek, Wilhelm Masarczyk, Przemyslaw Glomb, Michal Romaszewski, Iga Stoklosa, Piotr Scislo, Pawel Debski, Robert Pudlo, Krisztián Búza, Piotr Gorczyca, Magdalena Piegza:
Assessment of symptom severity in psychotic disorder patients based on heart rate variability and accelerometer mobility data. Comput. Biol. Medicine 176: 108544 (2024) - [c43]Margit Antal, Krisztián Búza, Szilárd Nemes:
Advancements in Text Subjectivity Analysis: From Simple Approaches to BERT-Based Models and Generalization Assessments. ICCCI (CCIS Volume 1) 2024: 245-255 - [c42]Krisztián Búza, Margit Antal:
ROCKET with Dynamic Convolution for Time Series Classification. ICCCI (CCIS Volume 1) 2024: 271-282 - [c41]Krisztián Búza:
Activity Recognition Based on Accelerometer Data with Enhanced ROCKET Algorithm. SACI 2024: 321-326 - 2023
- [c40]Krisztián Búza:
Sparsity-Invariant Convolution for Forecasting Irregularly Sampled Time Series. ICCCI 2023: 151-162 - [c39]Krisztián Búza, Kamil Ksiazek, Wilhelm Masarczyk, Przemyslaw Glomb, Piotr Gorczyca, Magdalena Piegza:
A Simple and Effective Classifier for the Detection of Schizophrenia and Bipolar Disorder based on Heart Rate Variability Time Series. ITAT 2023: 217-222 - 2022
- [c38]Bartosz Grabowski, Przemyslaw Glomb, Kamil Ksiazek, Krisztián Búza:
Improving Autoencoders Performance for Hyperspectral Unmixing Using Clustering. ACIIDS (Companion) 2022: 102-121 - [c37]Kamil Ksiazek, Przemyslaw Glomb, Michal Romaszewski, Michal Cholewa, Bartosz Grabowski, Krisztián Búza:
Improving Autoencoder Training Performance for Hyperspectral Unmixing with Network Reinitialisation. ICIAP (1) 2022: 391-403 - [c36]Ladislav Peska, Patrik Veselý, Tomás Skopal, Krisztián Búza:
Person Authentication using Visual Representations of Keyboard Typing Dynamics. SNAMS 2022: 1-6 - 2021
- [j12]Margit Antal, Krisztián Búza, Norbert Fejér:
SapiAgent: A Bot Based on Deep Learning to Generate Human-Like Mouse Trajectories. IEEE Access 9: 124396-124408 (2021) - [c35]Krisztián Búza, Margit Antal:
Convolutional Neural Networks with Dynamic Convolution for Time Series Classification. ICCCI (CCIS Volume) 2021: 304-312 - [c34]Margit Antal, Norbert Fejér, Krisztián Búza:
SapiMouse: Mouse Dynamics-based User Authentication Using Deep Feature Learning. SACI 2021: 61-66 - [c33]Anita-Bella Réthi, Krisztian Antal Buza, Orsolya Máthé, Mátyás Fosztó, Tamás Koncz, Károly Simon:
medR: Software System for Managing Medical History and Patient Examination Data. SISY 2021: 61-66 - 2020
- [j11]Aleksandra Revina, Krisztián Búza, Vera G. Meister:
IT Ticket Classification: The Simpler, the Better. IEEE Access 8: 193380-193395 (2020) - [c32]Krisztián Búza, Aleksandra Revina:
Speeding up the SUCCESS Approach for Massive Industrial Datasets. INISTA 2020: 1-6 - [c31]Krisztián Búza:
ASTERICS: Projection-based Classification of EEG with Asymmetric Loss Linear Regression and Genetic Algorithm. SACI 2020: 35-40
2010 – 2019
- 2019
- [c30]Krisztián Búza, Tomás Horváth:
Factorization Machines for Blog Feedback Prediction. CORES 2019: 79-85 - [c29]Zakarya Farou, Krisztián Búza:
The Warping Window Size Effects the Accuracy of Person Identification based on Keystroke Dynamics. ITAT 2019: 84-89 - [c28]Dániel T. Várkonyi, Krisztián Búza:
Extreme Learning Machines with Regularization for the Classification of Gene Expression Data. ITAT 2019: 99-103 - [i3]Krisztián Búza:
Encouraging an Appropriate Representation Simplifies Training of Neural Networks. CoRR abs/1911.07245 (2019) - 2018
- [c27]Krisztián Búza:
Time Series Classification and its Applications. WIMS 2018: 4:1-4:4 - [p2]Annamária Szenkovits, Regina Meszlényi, Krisztián Búza, Noémi Gaskó, Rodica Ioana Lung, Mihai Suciu:
Feature Selection with a Genetic Algorithm for Classification of Brain Imaging Data. Advances in Feature Selection for Data and Pattern Recognition 2018: 185-202 - 2017
- [j10]Ladislav Peska, Krisztián Búza, Júlia Koller:
Drug-target interaction prediction: A Bayesian ranking approach. Comput. Methods Programs Biomed. 152: 15-21 (2017) - [j9]Regina Meszlényi, Krisztián Búza, Zoltán Vidnyánszky:
Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture. Frontiers Neuroinformatics 11: 61 (2017) - [j8]Krisztián Búza, Ladislav Peska:
Drug-target interaction prediction with Bipartite Local Models and hubness-aware regression. Neurocomputing 260: 284-293 (2017) - [c26]Krisztián Búza, Piroska B. Kis:
Towards Privacy-Aware Keyboards. CORES 2017: 140-147 - [c25]Dóra Neubrandt, Krisztián Búza:
Projection-Based Person Identification. CORES 2017: 221-228 - [c24]Rajkumar Ramamurthy, Christian Bauckhage, Krisztián Búza, Stefan Wrobel:
Using Echo State Networks for Cryptography. ICANN (2) 2017: 663-671 - [c23]Krisztián Búza, Ladislav Peska:
ALADIN: A New Approach for Drug-Target Interaction Prediction. ECML/PKDD (2) 2017: 322-337 - [i2]Rajkumar Ramamurthy, Christian Bauckhage, Krisztián Búza, Stefan Wrobel:
Using Echo State Networks for Cryptography. CoRR abs/1704.01046 (2017) - [i1]Regina Meszlényi, Krisztián Búza, Zoltán Vidnyánszky:
Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture. CoRR abs/1707.06682 (2017) - 2016
- [j7]Krisztián Búza, Noémi Ágnes Varga:
ParkinsoNET: Estimation of UPDRS Score Using Hubness-Aware Feedforward Neural Networks. Appl. Artif. Intell. 30(6): 541-555 (2016) - [j6]Krisztián Búza:
Classification of gene expression data: A hubness-aware semi-supervised approach. Comput. Methods Programs Biomed. 127: 105-113 (2016) - [j5]Nenad Tomasev, Krisztián Búza, Dunja Mladenic:
Correcting the hub occurrence prediction bias in many dimensions. Comput. Sci. Inf. Syst. 13(1): 1-21 (2016) - [c22]Krisztián Búza:
Person Identification Based on Keystroke Dynamics: Demo and Open Challenge. CAiSE Forum 2016: 161-168 - [c21]Regina Meszlényi, Ladislav Peska, Viktor Gál, Zoltán Vidnyánszky, Krisztián Búza:
A Model for Classification Based on the Functional Connectivity Pattern Dynamics of the Brain. ENIC 2016: 203-208 - [c20]Regina Meszlényi, Ladislav Peska, Viktor Gál, Zoltán Vidnyánszky, Krisztián Búza:
Classification of fMRI data using dynamic time warping based functional connectivity analysis. EUSIPCO 2016: 245-249 - [c19]Rodica Ioana Lung, Mihai Suciu, Regina Meszlényi, Krisztián Búza, Noémi Gaskó:
Community Structure Detection for the Functional Connectivity Networks of the Brain. PPSN 2016: 633-643 - [c18]Krisztián Búza:
Drug-target interaction prediction with hubness-aware machine learning. SACI 2016: 437-440 - [c17]Krisztián Búza, Dóra Neubrandt:
How you type is who you are. SACI 2016: 453-456 - 2015
- [j4]Nenad Tomasev, Krisztián Búza:
Hubness-aware kNN classification of high-dimensional data in presence of label noise. Neurocomputing 160: 157-172 (2015) - [j3]Krisztián Búza, Alexandros Nanopoulos, Gábor I. Nagy:
Nearest neighbor regression in the presence of bad hubs. Knowl. Based Syst. 86: 250-260 (2015) - [c16]Krisztián Búza:
Semi-supervised Naive Hubness Bayesian k-Nearest Neighbor for Gene Expression Data. CORES 2015: 101-110 - [c15]Krisztián Búza, Júlia Koller, Kristóf Marussy:
PROCESS: Projection-Based Classification of Electroencephalograph Signals. ICAISC 2015: 91-100 - [p1]Nenad Tomasev, Krisztián Búza, Kristóf Marussy, Piroska B. Kis:
Hubness-Aware Classification, Instance Selection and Feature Construction: Survey and Extensions to Time-Series. Feature Selection for Data and Pattern Recognition 2015: 231-262 - 2014
- [j2]Krisztián Búza, Gábor I. Nagy, Alexandros Nanopoulos:
Storage-optimizing clustering algorithms for high-dimensional tick data. Expert Syst. Appl. 41(9): 4148-4157 (2014) - [d1]Krisztián Búza:
BlogFeedback. UCI Machine Learning Repository, 2014 - 2013
- [c14]Kristóf Marussy, Krisztián Búza:
SUCCESS: A New Approach for Semi-supervised Classification of Time-Series. ICAISC (1) 2013: 437-447 - 2012
- [j1]Krisztián Búza, Alexandros Nanopoulos, Tomás Horváth, Lars Schmidt-Thieme:
GRAMOFON: General model-selection framework based on networks. Neurocomputing 75(1): 163-170 (2012) - [c13]Krisztián Búza:
Feedback Prediction for Blogs. GfKl 2012: 145-152 - [c12]Gábor I. Nagy, Krisztián Búza:
SOHAC: Efficient Storage of Tick Data That Supports Search and Analysis. ICDM 2012: 38-51 - 2011
- [b1]Krisztian Antal Buza:
Fusion Methods for Time-Series Classification. University of Hildesheim, 2011, ISBN 978-3-631-63085-3, pp. 1-144 - [c11]Krisztián Búza, Alexandros Nanopoulos, Lars Schmidt-Thieme:
IQ estimation for accurate time-series classification. CIDM 2011: 216-223 - [c10]Krisztián Búza, Alexandros Nanopoulos, Lars Schmidt-Thieme:
Fusion of Similarity Measures for Time Series Classification. HAIS (2) 2011: 253-261 - [c9]Krisztián Búza, Alexandros Nanopoulos, Lars Schmidt-Thieme, Júlia Koller:
Fast Classification of Electrocardiograph Signals via Instance Selection. HISB 2011: 9-16 - [c8]Krisztián Búza, Antal Buza, Piroska B. Kis:
A Distributed Genetic Algorithm for Graph-Based Clustering. ICMMI 2011: 323-331 - [c7]Timo Reuter, Philipp Cimiano, Lucas Drumond, Krisztián Búza, Lars Schmidt-Thieme:
Scalable Event-Based Clustering of Social Media Via Record Linkage Techniques. ICWSM 2011 - [c6]Krisztián Búza, Alexandros Nanopoulos, Lars Schmidt-Thieme:
INSIGHT: Efficient and Effective Instance Selection for Time-Series Classification. PAKDD (2) 2011: 149-160 - 2010
- [c5]Krisztián Búza, Alexandros Nanopoulos, Lars Schmidt-Thieme:
Time-Series Classification Based on Individualised Error Prediction. CSE 2010: 48-54 - [c4]Krisztián Búza, Alexandros Nanopoulos, Lars Schmidt-Thieme:
Individualized Error Estimation for Classification and Regression Models. GfKl 2010: 183-191 - [c3]Krisztián Búza, Alexandros Nanopoulos, Lars Schmidt-Thieme:
Graph-Based Model-Selection Framework for Large Ensembles. HAIS (1) 2010: 557-564
2000 – 2009
- 2008
- [c2]Krisztián Búza, Lars Schmidt-Thieme:
Motif-Based Classification of Time Series with Bayesian Networks and SVMs. GfKl 2008: 105-114 - [c1]Leandro Balby Marinho, Krisztián Búza, Lars Schmidt-Thieme:
Folksonomy-Based Collabulary Learning. ISWC 2008: 261-276
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-23 20:33 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint