default search action
Sanjiv Kumar
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j17]Michal Lukasik, Vaishnavh Nagarajan, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
What do larger image classifiers memorise? Trans. Mach. Learn. Res. 2024 (2024) - [c111]Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, Sanjiv Kumar:
Rethinking FID: Towards a Better Evaluation Metric for Image Generation. CVPR 2024: 9307-9315 - [c110]Sadeep Jayasumana, Daniel Glasner, Srikumar Ramalingam, Andreas Veit, Ayan Chakrabarti, Sanjiv Kumar:
MarkovGen: Structured Prediction for Efficient Text-to-Image Generation. CVPR 2024: 9316-9325 - [c109]Michal Lukasik, Harikrishna Narasimhan, Aditya Krishna Menon, Felix Yu, Sanjiv Kumar:
Regression Aware Inference with LLMs. EMNLP (Findings) 2024: 13667-13678 - [c108]Lin Chen, Michal Lukasik, Wittawat Jitkrittum, Chong You, Sanjiv Kumar:
On Bias-Variance Alignment in Deep Models. ICLR 2024 - [c107]Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, Vaishnavh Nagarajan:
Think before you speak: Training Language Models With Pause Tokens. ICLR 2024 - [c106]Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Language Model Cascades: Token-Level Uncertainty And Beyond. ICLR 2024 - [c105]Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontañón, Manzil Zaheer, Sumit Sanghai, Yiming Yang, Sanjiv Kumar, Srinadh Bhojanapalli:
Functional Interpolation for Relative Positions improves Long Context Transformers. ICLR 2024 - [c104]Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, Neha Gupta, Sanjiv Kumar:
Learning to Reject Meets Long-tail Learning. ICLR 2024 - [c103]Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, Sanjiv Kumar:
Plugin estimators for selective classification with out-of-distribution detection. ICLR 2024 - [c102]Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix Yu, Cho-Jui Hsieh, Inderjit S. Dhillon, Sanjiv Kumar:
Two-stage LLM Fine-tuning with Less Specialization and More Generalization. ICLR 2024 - [c101]Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv Kumar, Jean-François Kagy, Rishabh Agarwal:
DistillSpec: Improving Speculative Decoding via Knowledge Distillation. ICLR 2024 - [c100]Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, Sanjiv Kumar:
Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? ICML 2024 - [c99]Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer, Wittawat Jitkrittum, Veeranjaneyulu Sadhanala, Sadeep Jayasumana, Aditya Krishna Menon, Rob Fergus, Sanjiv Kumar:
USTAD: Unified Single-model Training Achieving Diverse Scores for Information Retrieval. ICML 2024 - [c98]Yuchen Li, Alexandre Kirchmeyer, Aashay Mehta, Yilong Qin, Boris Dadachev, Kishore Papineni, Sanjiv Kumar, Andrej Risteski:
Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines. ICML 2024 - [c97]Aishwarya P. S., Pranav Ajit Nair, Yashas Samaga, Toby Boyd, Sanjiv Kumar, Prateek Jain, Praneeth Netrapalli:
Tandem Transformers for Inference Efficient LLMs. ICML 2024 - [i111]Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, Sanjiv Kumar:
Rethinking FID: Towards a Better Evaluation Metric for Image Generation. CoRR abs/2401.09603 (2024) - [i110]Ke Ye, Heinrich Jiang, Afshin Rostamizadeh, Ayan Chakrabarti, Giulia DeSalvo, Jean-François Kagy, Lazaros Karydas, Gui Citovsky, Sanjiv Kumar:
SpacTor-T5: Pre-training T5 Models with Span Corruption and Replaced Token Detection. CoRR abs/2401.13160 (2024) - [i109]Abhishek Panigrahi, Nikunj Saunshi, Kaifeng Lyu, Sobhan Miryoosefi, Sashank J. Reddi, Satyen Kale, Sanjiv Kumar:
Efficient Stagewise Pretraining via Progressive Subnetworks. CoRR abs/2402.05913 (2024) - [i108]Aishwarya P. S., Pranav Ajit Nair, Yashas Samaga, Toby Boyd, Sanjiv Kumar, Prateek Jain, Praneeth Netrapalli:
Tandem Transformers for Inference Efficient LLMs. CoRR abs/2402.08644 (2024) - [i107]Yashas Samaga, Varun Yerram, Chong You, Srinadh Bhojanapalli, Sanjiv Kumar, Prateek Jain, Praneeth Netrapalli:
HiRE: High Recall Approximate Top-k Estimation for Efficient LLM Inference. CoRR abs/2402.09360 (2024) - [i106]Michal Lukasik, Harikrishna Narasimhan, Aditya Krishna Menon, Felix X. Yu, Sanjiv Kumar:
Metric-aware LLM inference. CoRR abs/2403.04182 (2024) - [i105]Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, Sanjiv Kumar:
SOAR: Improved Indexing for Approximate Nearest Neighbor Search. CoRR abs/2404.00774 (2024) - [i104]Taehyeon Kim, Ananda Theertha Suresh, Kishore Papineni, Michael Riley, Sanjiv Kumar, Adrian Benton:
Towards Fast Inference: Exploring and Improving Blockwise Parallel Drafts. CoRR abs/2404.09221 (2024) - [i103]Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Language Model Cascades: Token-level uncertainty and beyond. CoRR abs/2404.10136 (2024) - [i102]Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta, Aditya Krishna Menon, Sanjiv Kumar:
Faster Cascades via Speculative Decoding. CoRR abs/2405.19261 (2024) - [i101]Stefani Karp, Nikunj Saunshi, Sobhan Miryoosefi, Sashank J. Reddi, Sanjiv Kumar:
Landscape-Aware Growing: The Power of a Little LAG. CoRR abs/2406.02469 (2024) - [i100]Ziwei Ji, Himanshu Jain, Andreas Veit, Sashank J. Reddi, Sadeep Jayasumana, Ankit Singh Rawat, Aditya Krishna Menon, Felix Yu, Sanjiv Kumar:
Efficient Document Ranking with Learnable Late Interactions. CoRR abs/2406.17968 (2024) - [i99]Yuchen Li, Alexandre Kirchmeyer, Aashay Mehta, Yilong Qin, Boris Dadachev, Kishore Papineni, Sanjiv Kumar, Andrej Risteski:
Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines. CoRR abs/2407.21046 (2024) - [i98]Nikunj Saunshi, Stefani Karp, Shankar Krishnan, Sobhan Miryoosefi, Sashank J. Reddi, Sanjiv Kumar:
On the Inductive Bias of Stacking Towards Improving Reasoning. CoRR abs/2409.19044 (2024) - [i97]Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, Sanjiv Kumar:
Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? CoRR abs/2410.08292 (2024) - [i96]Asher Trockman, Hrayr Harutyunyan, J. Zico Kolter, Sanjiv Kumar, Srinadh Bhojanapalli:
Mimetic Initialization Helps State Space Models Learn to Recall. CoRR abs/2410.11135 (2024) - [i95]Giulia DeSalvo, Jean-François Kagy, Lazaros Karydas, Afshin Rostamizadeh, Sanjiv Kumar:
No more hard prompts: SoftSRV prompting for synthetic data generation. CoRR abs/2410.16534 (2024) - [i94]Ankit Singh Rawat, Veeranjaneyulu Sadhanala, Afshin Rostamizadeh, Ayan Chakrabarti, Wittawat Jitkrittum, Vladimir Feinberg, Seungyeon Kim, Hrayr Harutyunyan, Nikunj Saunshi, Zachary Nado, Rakesh Shivanna, Sashank J. Reddi, Aditya Krishna Menon, Rohan Anil, Sanjiv Kumar:
A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs. CoRR abs/2410.18779 (2024) - [i93]Jui-Nan Yen, Si Si, Zhao Meng, Felix X. Yu, Sai Surya Duvvuri, Inderjit S. Dhillon, Cho-Jui Hsieh, Sanjiv Kumar:
LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization. CoRR abs/2410.20625 (2024) - [i92]Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, Sanjiv Kumar:
On the Role of Depth and Looping for In-Context Learning with Task Diversity. CoRR abs/2410.21698 (2024) - 2023
- [c96]Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix X. Yu, Sanjiv Kumar:
Large Language Models with Controllable Working Memory. ACL (Findings) 2023: 1774-1793 - [c95]Gui Citovsky, Giulia DeSalvo, Sanjiv Kumar, Srikumar Ramalingam, Afshin Rostamizadeh, Yunjuan Wang:
Leveraging Importance Weights in Subset Selection. ICLR 2023 - [c94]Hrayr Harutyunyan, Ankit Singh Rawat, Aditya Krishna Menon, Seungyeon Kim, Sanjiv Kumar:
Supervision Complexity and its Role in Knowledge Distillation. ICLR 2023 - [c93]Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Felix Chern, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar:
The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers. ICLR 2023 - [c92]Si Si, Felix X. Yu, Ankit Singh Rawat, Cho-Jui Hsieh, Sanjiv Kumar:
Serving Graph Compression for Graph Neural Networks. ICLR 2023 - [c91]Philip Sun, Ruiqi Guo, Sanjiv Kumar:
Automating Nearest Neighbor Search Configuration with Constrained Optimization. ICLR 2023 - [c90]Manzil Zaheer, Ankit Singh Rawat, Seungyeon Kim, Chong You, Himanshu Jain, Andreas Veit, Rob Fergus, Sanjiv Kumar:
Teacher Guided Training: An Efficient Framework for Knowledge Transfer. ICLR 2023 - [c89]Sashank J. Reddi, Sobhan Miryoosefi, Stefani Karp, Shankar Krishnan, Satyen Kale, Seungyeon Kim, Sanjiv Kumar:
Efficient Training of Language Models using Few-Shot Learning. ICML 2023: 14553-14568 - [c88]Guna Shekar M., Wonjun Lee, Sanjiv Kumar, Yanan Duan, Imtiaz Rangwala:
A Framework for Developing the Next Generation Interactive Soil Moisture Forecasting System Using the Long-Short Term Memory Model. ICMLA 2023: 1986-1993 - [c87]Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sanjiv Kumar:
When Does Confidence-Based Cascade Deferral Suffice? NeurIPS 2023 - [c86]Vaishnavh Nagarajan, Aditya Krishna Menon, Srinadh Bhojanapalli, Hossein Mobahi, Sanjiv Kumar:
On student-teacher deviations in distillation: does it pay to disobey? NeurIPS 2023 - [c85]Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, Sanjiv Kumar:
SOAR: Improved Indexing for Approximate Nearest Neighbor Search. NeurIPS 2023 - [c84]Zitong Yang, Michal Lukasik, Vaishnavh Nagarajan, Zonglin Li, Ankit Singh Rawat, Manzil Zaheer, Aditya Krishna Menon, Sanjiv Kumar:
ResMem: Learn what you can and memorize the rest. NeurIPS 2023 - [i91]Philip Sun, Ruiqi Guo, Sanjiv Kumar:
Automating Nearest Neighbor Search Configuration with Constrained Optimization. CoRR abs/2301.01702 (2023) - [i90]Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer, Sadeep Jayasumana, Veeranjaneyulu Sadhanala, Wittawat Jitkrittum, Aditya Krishna Menon, Rob Fergus, Sanjiv Kumar:
EmbedDistill: A Geometric Knowledge Distillation for Information Retrieval. CoRR abs/2301.12005 (2023) - [i89]Gui Citovsky, Giulia DeSalvo, Sanjiv Kumar, Srikumar Ramalingam, Afshin Rostamizadeh, Yunjuan Wang:
Leveraging Importance Weights in Subset Selection. CoRR abs/2301.12052 (2023) - [i88]Hrayr Harutyunyan, Ankit Singh Rawat, Aditya Krishna Menon, Seungyeon Kim, Sanjiv Kumar:
Supervision Complexity and its Role in Knowledge Distillation. CoRR abs/2301.12245 (2023) - [i87]Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, Sanjiv Kumar:
Learning to reject meets OOD detection: Are all abstentions created equal? CoRR abs/2301.12386 (2023) - [i86]Vaishnavh Nagarajan, Aditya Krishna Menon, Srinadh Bhojanapalli, Hossein Mobahi, Sanjiv Kumar:
On student-teacher deviations in distillation: does it pay to disobey? CoRR abs/2301.12923 (2023) - [i85]Zitong Yang, Michal Lukasik, Vaishnavh Nagarajan, Zonglin Li, Ankit Singh Rawat, Manzil Zaheer, Aditya Krishna Menon, Sanjiv Kumar:
ResMem: Learn what you can and memorize the rest. CoRR abs/2302.01576 (2023) - [i84]Samy Jelassi, Boris Hanin, Ziwei Ji, Sashank J. Reddi, Srinadh Bhojanapalli, Sanjiv Kumar:
Depth Dependence of μP Learning Rates in ReLU MLPs. CoRR abs/2305.07810 (2023) - [i83]Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sanjiv Kumar:
When Does Confidence-Based Cascade Deferral Suffice? CoRR abs/2307.02764 (2023) - [i82]Sadeep Jayasumana, Daniel Glasner, Srikumar Ramalingam, Andreas Veit, Ayan Chakrabarti, Sanjiv Kumar:
SPEGTI: Structured Prediction for Efficient Generative Text-to-Image Models. CoRR abs/2308.10997 (2023) - [i81]Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, Vaishnavh Nagarajan:
Think before you speak: Training Language Models With Pause Tokens. CoRR abs/2310.02226 (2023) - [i80]Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontañón, Manzil Zaheer, Sumit Sanghai, Yiming Yang, Sanjiv Kumar, Srinadh Bhojanapalli:
Functional Interpolation for Relative Positions Improves Long Context Transformers. CoRR abs/2310.04418 (2023) - [i79]Michal Lukasik, Vaishnavh Nagarajan, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
What do larger image classifiers memorise? CoRR abs/2310.05337 (2023) - [i78]Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv Kumar, Jean-François Kagy, Rishabh Agarwal:
DistillSpec: Improving Speculative Decoding via Knowledge Distillation. CoRR abs/2310.08461 (2023) - [i77]Lin Chen, Michal Lukasik, Wittawat Jitkrittum, Chong You, Sanjiv Kumar:
It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep Models. CoRR abs/2310.09250 (2023) - [i76]Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang Li, Sheila Babayan, Kavya Kopparapu, Zachary Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srinivasan, Manzil Zaheer, Felix X. Yu, Sanjiv Kumar:
ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent. CoRR abs/2312.10003 (2023) - [i75]Srikumar Ramalingam, Pranjal Awasthi, Sanjiv Kumar:
A Weighted K-Center Algorithm for Data Subset Selection. CoRR abs/2312.10602 (2023) - 2022
- [j16]Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar:
Teacher's pet: understanding and mitigating biases in distillation. Trans. Mach. Learn. Res. 2022 (2022) - [c83]Gautam Gautam, Neeraj Sharma, Sanjiv Kumar:
Radio over FSO System for 5G Wireless Communication. ICCCNT 2022: 1-6 - [c82]Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank J. Reddi, Sanjiv Kumar:
Robust Training of Neural Networks Using Scale Invariant Architectures. ICML 2022: 12656-12684 - [c81]Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Seungyeon Kim, Sashank J. Reddi, Sanjiv Kumar:
In defense of dual-encoders for neural ranking. ICML 2022: 15376-15400 - [c80]Felix Chern, Blake Hechtman, Andy Davis, Ruiqi Guo, David Majnemer, Sanjiv Kumar:
TPU-KNN: K Nearest Neighbor Search at Peak FLOP/s. NeurIPS 2022 - [c79]Zonglin Li, Ruiqi Guo, Sanjiv Kumar:
Decoupled Context Processing for Context Augmented Language Modeling. NeurIPS 2022 - [c78]Harikrishna Narasimhan, Wittawat Jitkrittum, Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar:
Post-hoc estimators for learning to defer to an expert. NeurIPS 2022 - [i74]Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank J. Reddi, Sanjiv Kumar:
Robust Training of Neural Networks using Scale Invariant Architectures. CoRR abs/2202.00980 (2022) - [i73]Taman Narayan, Heinrich Jiang, Sen Zhao, Sanjiv Kumar:
Predicting on the Edge: Identifying Where a Larger Model Does Better. CoRR abs/2202.07652 (2022) - [i72]Wittawat Jitkrittum, Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar:
ELM: Embedding and Logit Margins for Long-Tail Learning. CoRR abs/2204.13208 (2022) - [i71]Felix Chern, Blake Hechtman, Andy Davis, Ruiqi Guo, David Majnemer, Sanjiv Kumar:
TPU-KNN: K Nearest Neighbor Search at Peak FLOP/s. CoRR abs/2206.14286 (2022) - [i70]Manzil Zaheer, Ankit Singh Rawat, Seungyeon Kim, Chong You, Himanshu Jain, Andreas Veit, Rob Fergus, Sanjiv Kumar:
Teacher Guided Training: An Efficient Framework for Knowledge Transfer. CoRR abs/2208.06825 (2022) - [i69]Zonglin Li, Ruiqi Guo, Sanjiv Kumar:
Decoupled Context Processing for Context Augmented Language Modeling. CoRR abs/2210.05758 (2022) - [i68]Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Felix Chern, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar:
Large Models are Parsimonious Learners: Activation Sparsity in Trained Transformers. CoRR abs/2210.06313 (2022) - [i67]Arslan Chaudhry, Aditya Krishna Menon, Andreas Veit, Sadeep Jayasumana, Srikumar Ramalingam, Sanjiv Kumar:
When does mixup promote local linearity in learned representations? CoRR abs/2210.16413 (2022) - [i66]Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix X. Yu, Cho-Jui Hsieh, Inderjit S. Dhillon, Sanjiv Kumar:
Preserving In-Context Learning ability in Large Language Model Fine-tuning. CoRR abs/2211.00635 (2022) - [i65]Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix X. Yu, Sanjiv Kumar:
Large Language Models with Controllable Working Memory. CoRR abs/2211.05110 (2022) - 2021
- [j15]Ankita Verma, Savita, Sanjiv Kumar:
Routing Protocols in Delay Tolerant Networks: Comparative and Empirical Analysis. Wirel. Pers. Commun. 118(1): 551-574 (2021) - [c77]Sashank J. Reddi, Rama Kumar Pasumarthi, Aditya Krishna Menon, Ankit Singh Rawat, Felix X. Yu, Seungyeon Kim, Andreas Veit, Sanjiv Kumar:
RankDistil: Knowledge Distillation for Ranking. AISTATS 2021: 2368-2376 - [c76]Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Kumar Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh:
Evaluations and Methods for Explanation through Robustness Analysis. ICLR 2021 - [c75]Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, Sanjiv Kumar:
Long-tail learning via logit adjustment. ICLR 2021 - [c74]Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar:
Overparameterisation and worst-case generalisation: friend or foe? ICLR 2021 - [c73]Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecný, Sanjiv Kumar, Hugh Brendan McMahan:
Adaptive Federated Optimization. ICLR 2021 - [c72]Jingzhao Zhang, Aditya Krishna Menon, Andreas Veit, Srinadh Bhojanapalli, Sanjiv Kumar, Suvrit Sra:
Coping with Label Shift via Distributionally Robust Optimisation. ICLR 2021 - [c71]Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Seungyeon Kim, Sanjiv Kumar:
A statistical perspective on distillation. ICML 2021: 7632-7642 - [c70]Ankit Singh Rawat, Aditya Krishna Menon, Wittawat Jitkrittum, Sadeep Jayasumana, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
Disentangling Sampling and Labeling Bias for Learning in Large-output Spaces. ICML 2021: 8890-8901 - [c69]Erik Lindgren, Sashank J. Reddi, Ruiqi Guo, Sanjiv Kumar:
Efficient Training of Retrieval Models using Negative Cache. NeurIPS 2021: 4134-4146 - [c68]Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin Rostamizadeh, Sanjiv Kumar:
Batch Active Learning at Scale. NeurIPS 2021: 11933-11944 - [i64]Srinadh Bhojanapalli, Kimberly Wilber, Andreas Veit, Ankit Singh Rawat, Seungyeon Kim, Aditya Krishna Menon, Sanjiv Kumar:
On the Reproducibility of Neural Network Predictions. CoRR abs/2102.03349 (2021) - [i63]Srikumar Ramalingam, Daniel Glasner, Kaushal Patel, Raviteja Vemulapalli, Sadeep Jayasumana, Sanjiv Kumar:
Balancing Constraints and Submodularity in Data Subset Selection. CoRR abs/2104.12835 (2021) - [i62]Ankit Singh Rawat, Aditya Krishna Menon, Wittawat Jitkrittum, Sadeep Jayasumana, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
Disentangling Sampling and Labeling Bias for Learning in Large-Output Spaces. CoRR abs/2105.05736 (2021) - [i61]Seungyeon Kim, Daniel Glasner, Srikumar Ramalingam, Cho-Jui Hsieh, Kishore Papineni, Sanjiv Kumar:
Balancing Robustness and Sensitivity using Feature Contrastive Learning. CoRR abs/2105.09394 (2021) - [i60]Baris Sumengen, Anand Rajagopalan, Gui Citovsky, David Simcha, Olivier Bachem, Pradipta Mitra, Sam Blasiak, Mason Liang, Sanjiv Kumar:
Scaling Hierarchical Agglomerative Clustering to Billion-sized Datasets. CoRR abs/2105.11653 (2021) - [i59]Srinadh Bhojanapalli, Ayan Chakrabarti, Himanshu Jain, Sanjiv Kumar, Michal Lukasik, Andreas Veit:
Eigen Analysis of Self-Attention and its Reconstruction from Partial Computation. CoRR abs/2106.08823 (2021) - [i58]Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar:
Teacher's pet: understanding and mitigating biases in distillation. CoRR abs/2106.10494 (2021) - [i57]Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin Rostamizadeh, Sanjiv Kumar:
Batch Active Learning at Scale. CoRR abs/2107.14263 (2021) - [i56]Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Frederick Liu, Yin-Wen Chang, Sanjiv Kumar:
Leveraging redundancy in attention with Reuse Transformers. CoRR abs/2110.06821 (2021) - [i55]Ankit Singh Rawat, Manzil Zaheer, Aditya Krishna Menon, Amr Ahmed, Sanjiv Kumar:
When in Doubt, Summon the Titans: Efficient Inference with Large Models. CoRR abs/2110.10305 (2021) - 2020
- [c67]Quan Geng, Wei Ding, Ruiqi Guo, Sanjiv Kumar:
Tight Analysis of Privacy and Utility Tradeoff in Approximate Differential Privacy. AISTATS 2020: 89-99 - [c66]Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh:
How Does Noise Help Robustness? Explanation and Exploration under the Neural SDE Framework. CVPR 2020: 279-287 - [c65]Michal Lukasik, Himanshu Jain, Aditya Krishna Menon, Seungyeon Kim, Srinadh Bhojanapalli, Felix X. Yu, Sanjiv Kumar:
Semantic Label Smoothing for Sequence to Sequence Problems. EMNLP (1) 2020: 4992-4998 - [c64]Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, Sanjiv Kumar:
Pre-training Tasks for Embedding-based Large-scale Retrieval. ICLR 2020 - [c63]Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Can gradient clipping mitigate label noise? ICLR 2020 - [c62]Yangjun Ruan, Yuanhao Xiong, Sashank J. Reddi, Sanjiv Kumar, Cho-Jui Hsieh:
Learning to Learn by Zeroth-Order Oracle. ICLR 2020 - [c61]Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, Cho-Jui Hsieh:
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. ICLR 2020 - [c60]Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Are Transformers universal approximators of sequence-to-sequence functions? ICLR 2020 - [c59]Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Low-Rank Bottleneck in Multi-head Attention Models. ICML 2020: 864-873 - [c58]Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, Sanjiv Kumar:
Accelerating Large-Scale Inference with Anisotropic Vector Quantization. ICML 2020: 3887-3896 - [c57]Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar:
Does label smoothing mitigate label noise? ICML 2020: 6448-6458 - [c56]Felix X. Yu, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Federated Learning with Only Positive Labels. ICML 2020: 10946-10956 - [c55]Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Robust large-margin learning in hyperbolic space. NeurIPS 2020 - [c54]Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane S. Boning, Cho-Jui Hsieh:
Multi-Stage Influence Function. NeurIPS 2020 - [c53]Yuhan Liu, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, Michael Riley:
Learning discrete distributions: user vs item-level privacy. NeurIPS 2020 - [c52]Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
O(n) Connections are Expressive Enough: Universal Approximability of Sparse Transformers. NeurIPS 2020 - [c51]Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J. Reddi, Sanjiv Kumar, Suvrit Sra:
Why are Adaptive Methods Good for Attention Models? NeurIPS 2020 - [i54]Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, Sanjiv Kumar:
Pre-training Tasks for Embedding-based Large-scale Retrieval. CoRR abs/2002.03932 (2020) - [i53]Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Low-Rank Bottleneck in Multi-head Attention Models. CoRR abs/2002.07028 (2020) - [i52]Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecný, Sanjiv Kumar, H. Brendan McMahan:
Adaptive Federated Optimization. CoRR abs/2003.00295 (2020) - [i51]Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar:
Does label smoothing mitigate label noise? CoRR abs/2003.02819 (2020) - [i50]Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Robust Large-Margin Learning in Hyperbolic Space. CoRR abs/2004.05465 (2020) - [i49]Felix X. Yu, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Federated Learning with Only Positive Labels. CoRR abs/2004.10342 (2020) - [i48]Ankit Singh Rawat, Aditya Krishna Menon, Andreas Veit, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
Doubly-stochastic mining for heterogeneous retrieval. CoRR abs/2004.10915 (2020) - [i47]Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Seungyeon Kim, Sanjiv Kumar:
Why distillation helps: a statistical perspective. CoRR abs/2005.10419 (2020) - [i46]Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh:
Evaluations and Methods for Explanation through Robustness Analysis. CoRR abs/2006.00442 (2020) - [i45]Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
$O(n)$ Connections are Expressive Enough: Universal Approximability of Sparse Transformers. CoRR abs/2006.04862 (2020) - [i44]Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, Sanjiv Kumar:
Long-tail learning via logit adjustment. CoRR abs/2007.07314 (2020) - [i43]Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane S. Boning, Cho-Jui Hsieh:
Multi-Stage Influence Function. CoRR abs/2007.09081 (2020) - [i42]Yuhan Liu, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, Michael Riley:
Learning discrete distributions: user vs item-level privacy. CoRR abs/2007.13660 (2020) - [i41]Michal Lukasik, Himanshu Jain, Aditya Krishna Menon, Seungyeon Kim, Srinadh Bhojanapalli, Felix X. Yu, Sanjiv Kumar:
Semantic Label Smoothing for Sequence to Sequence Problems. CoRR abs/2010.07447 (2020) - [i40]Jingzhao Zhang, Aditya Krishna Menon, Andreas Veit, Srinadh Bhojanapalli, Sanjiv Kumar, Suvrit Sra:
Coping with Label Shift via Distributionally Robust Optimisation. CoRR abs/2010.12230 (2020) - [i39]Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix X. Yu, Sanjiv Kumar:
Modifying Memories in Transformer Models. CoRR abs/2012.00363 (2020) - [i38]Sadeep Jayasumana, Srikumar Ramalingam, Sanjiv Kumar:
Kernelized Classification in Deep Networks. CoRR abs/2012.09607 (2020)
2010 – 2019
- 2019
- [c50]Yanjun Li, Kai Zhang, Jun Wang, Sanjiv Kumar:
Learning Adaptive Random Features. AAAI 2019: 4229-4236 - [c49]Quan Geng, Wei Ding, Ruiqi Guo, Sanjiv Kumar:
Optimal Noise-Adding Mechanism in Additive Differential Privacy. AISTATS 2019: 11-20 - [c48]Sashank J. Reddi, Satyen Kale, Felix X. Yu, Daniel Niels Holtmann-Rice, Jiecao Chen, Sanjiv Kumar:
Stochastic Negative Mining for Learning with Large Output Spaces. AISTATS 2019: 1940-1949 - [c47]Patrick H. Chen, Si Si, Sanjiv Kumar, Yang Li, Cho-Jui Hsieh:
Learning to Screen for Fast Softmax Inference on Large Vocabulary Neural Networks. ICLR (Poster) 2019 - [c46]Matthew Staib, Sashank J. Reddi, Satyen Kale, Sanjiv Kumar, Suvrit Sra:
Escaping Saddle Points with Adaptive Gradient Methods. ICML 2019: 5956-5965 - [c45]Shanshan Wu, Alex Dimakis, Sujay Sanghavi, Felix X. Yu, Daniel Niels Holtmann-Rice, Dmitry Storcheus, Afshin Rostamizadeh, Sanjiv Kumar:
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling. ICML 2019: 6828-6839 - [c44]Chuan Guo, Ali Mousavi, Xiang Wu, Daniel Niels Holtmann-Rice, Satyen Kale, Sashank J. Reddi, Sanjiv Kumar:
Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces. NeurIPS 2019: 4944-4954 - [c43]Ankit Singh Rawat, Jiecao Chen, Felix X. Yu, Ananda Theertha Suresh, Sanjiv Kumar:
Sampled Softmax with Random Fourier Features. NeurIPS 2019: 13834-13844 - [i37]Matthew Staib, Sashank J. Reddi, Satyen Kale, Sanjiv Kumar, Suvrit Sra:
Escaping Saddle Points with Adaptive Gradient Methods. CoRR abs/1901.09149 (2019) - [i36]Xiang Wu, Ruiqi Guo, David Simcha, Dave Dopson, Sanjiv Kumar:
Efficient Inner Product Approximation in Hybrid Spaces. CoRR abs/1903.08690 (2019) - [i35]Xiang Wu, Ruiqi Guo, Sanjiv Kumar, David Simcha:
Local Orthogonal Decomposition for Maximum Inner Product Search. CoRR abs/1903.10391 (2019) - [i34]Sashank J. Reddi, Satyen Kale, Sanjiv Kumar:
On the Convergence of Adam and Beyond. CoRR abs/1904.09237 (2019) - [i33]Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh:
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise. CoRR abs/1906.02355 (2019) - [i32]Ankit Singh Rawat, Jiecao Chen, Felix X. Yu, Ananda Theertha Suresh, Sanjiv Kumar:
Sampled Softmax with Random Fourier Features. CoRR abs/1907.10747 (2019) - [i31]Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
AdaCliP: Adaptive Clipping for Private SGD. CoRR abs/1908.07643 (2019) - [i30]Ruiqi Guo, Quan Geng, David Simcha, Felix Chern, Sanjiv Kumar, Xiang Wu:
New Loss Functions for Fast Maximum Inner Product Search. CoRR abs/1908.10396 (2019) - [i29]Aditya Krishna Menon, Anand Rajagopalan, Baris Sumengen, Gui Citovsky, Qin Cao, Sanjiv Kumar:
Online Hierarchical Clustering Approximations. CoRR abs/1909.09667 (2019) - [i28]Yangjun Ruan, Yuanhao Xiong, Sashank J. Reddi, Sanjiv Kumar, Cho-Jui Hsieh:
Learning to Learn by Zeroth-Order Oracle. CoRR abs/1910.09464 (2019) - [i27]Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J. Reddi, Sanjiv Kumar, Suvrit Sra:
Why ADAM Beats SGD for Attention Models. CoRR abs/1912.03194 (2019) - [i26]Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Are Transformers universal approximators of sequence-to-sequence functions? CoRR abs/1912.10077 (2019) - 2018
- [c42]Sashank J. Reddi, Satyen Kale, Sanjiv Kumar:
On the Convergence of Adam and Beyond. ICLR 2018 - [c41]Ian En-Hsu Yen, Satyen Kale, Felix X. Yu, Daniel Niels Holtmann-Rice, Sanjiv Kumar, Pradeep Ravikumar:
Loss Decomposition for Fast Learning in Large Output Spaces. ICML 2018: 5626-5635 - [c40]Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, Brendan McMahan:
cpSGD: Communication-efficient and differentially-private distributed SGD. NeurIPS 2018: 7575-7586 - [c39]Manzil Zaheer, Sashank J. Reddi, Devendra Singh Sachan, Satyen Kale, Sanjiv Kumar:
Adaptive Methods for Nonconvex Optimization. NeurIPS 2018: 9815-9825 - [i25]Si Si, Sanjiv Kumar, Yang Li:
Nonlinear Online Learning with Adaptive Nyström Approximation. CoRR abs/1802.07887 (2018) - [i24]Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, H. Brendan McMahan:
cpSGD: Communication-efficient and differentially-private distributed SGD. CoRR abs/1805.10559 (2018) - [i23]Shanshan Wu, Alexandros G. Dimakis, Sujay Sanghavi, Felix X. Yu, Daniel Niels Holtmann-Rice, Dmitry Storcheus, Afshin Rostamizadeh, Sanjiv Kumar:
The Sparse Recovery Autoencoder. CoRR abs/1806.10175 (2018) - [i22]Quan Geng, Wei Ding, Ruiqi Guo, Sanjiv Kumar:
Optimal Noise-Adding Mechanism in Additive Differential Privacy. CoRR abs/1809.10224 (2018) - [i21]Quan Geng, Wei Ding, Ruiqi Guo, Sanjiv Kumar:
Truncated Laplacian Mechanism for Approximate Differential Privacy. CoRR abs/1810.00877 (2018) - [i20]Sashank J. Reddi, Satyen Kale, Felix X. Yu, Daniel N. Holtmann-Rice, Jiecao Chen, Sanjiv Kumar:
Stochastic Negative Mining for Learning with Large Output Spaces. CoRR abs/1810.07076 (2018) - [i19]Patrick H. Chen, Si Si, Sanjiv Kumar, Yang Li, Cho-Jui Hsieh:
Learning to Screen for Fast Softmax Inference on Large Vocabulary Neural Networks. CoRR abs/1810.12406 (2018) - 2017
- [j14]Felix X. Yu, Aditya Bhaskara, Sanjiv Kumar, Yunchao Gong, Shih-Fu Chang:
On Binary Embedding using Circulant Matrices. J. Mach. Learn. Res. 18: 150:1-150:30 (2017) - [c38]Kai Zhong, Ruiqi Guo, Sanjiv Kumar, Bowei Yan, David Simcha, Inderjit S. Dhillon:
Fast Classification with Binary Prototypes. AISTATS 2017: 1255-1263 - [c37]Xu Zhang, Felix X. Yu, Sanjiv Kumar, Shih-Fu Chang:
Learning Spread-Out Local Feature Descriptors. ICCV 2017: 4605-4613 - [c36]Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, Le Song:
Stochastic Generative Hashing. ICML 2017: 913-922 - [c35]Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, H. Brendan McMahan:
Distributed Mean Estimation with Limited Communication. ICML 2017: 3329-3337 - [c34]Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N. Holtmann-Rice, David Simcha, Felix X. Yu:
Multiscale Quantization for Fast Similarity Search. NIPS 2017: 5745-5755 - [i18]Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, Le Song:
Stochastic Generative Hashing. CoRR abs/1701.02815 (2017) - [i17]Matthew L. Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Kumar, Balint Miklos, Ray Kurzweil:
Efficient Natural Language Response Suggestion for Smart Reply. CoRR abs/1705.00652 (2017) - [i16]Xu Zhang, Felix X. Yu, Sanjiv Kumar, Shih-Fu Chang:
Learning Spread-out Local Feature Descriptors. CoRR abs/1708.06320 (2017) - [i15]Blaise Agüera y Arcas, Beat Gfeller, Ruiqi Guo, Kevin Kilgour, Sanjiv Kumar, James Lyon, Julian Odell, Marvin Ritter, Dominik Roblek, Matthew Sharifi, Mihajlo Velimirovic:
Now Playing: Continuous low-power music recognition. CoRR abs/1711.10958 (2017) - 2016
- [j13]Sanjiv Kumar, Ritika Chopra, Ratnesh Rajan Saxena:
A Fast Approach to Solve Matrix Games with Payoffs of Trapezoidal Fuzzy Numbers. Asia Pac. J. Oper. Res. 33(6): 1650047:1-1650047:14 (2016) - [j12]Wonjun Lee, Sanjiv Kumar:
Software-Defined Storage-Based Data Infrastructure Supportive of Hydroclimatology Simulation Containers: A Survey. Data Sci. Eng. 1(2): 65-72 (2016) - [j11]Jun Wang, Wei Liu, Sanjiv Kumar, Shih-Fu Chang:
Learning to Hash for Indexing Big Data - A Survey. Proc. IEEE 104(1): 34-57 (2016) - [c33]Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, David Simcha:
Quantization based Fast Inner Product Search. AISTATS 2016: 482-490 - [c32]Anna Choromanska, Krzysztof Choromanski, Mariusz Bojarski, Tony Jebara, Sanjiv Kumar, Yann LeCun:
Binary embeddings with structured hashed projections. ICML 2016: 344-353 - [c31]Felix X. Yu, Ananda Theertha Suresh, Krzysztof Marcin Choromanski, Daniel N. Holtmann-Rice, Sanjiv Kumar:
Orthogonal Random Features. NIPS 2016: 1975-1983 - [i14]Felix X. Yu, Ananda Theertha Suresh, Krzysztof Choromanski, Daniel N. Holtmann-Rice, Sanjiv Kumar:
Orthogonal Random Features. CoRR abs/1610.09072 (2016) - [i13]Ananda Theertha Suresh, Felix X. Yu, H. Brendan McMahan, Sanjiv Kumar:
Distributed Mean Estimation with Limited Communication. CoRR abs/1611.00429 (2016) - 2015
- [c30]Yanbo Xu, Olivier Siohan, David Simcha, Sanjiv Kumar, Hank Liao:
Exemplar-based large vocabulary speech recognition using k-nearest neighbors. ICASSP 2015: 5167-5171 - [c29]Yu Cheng, Felix X. Yu, Rogério Schmidt Feris, Sanjiv Kumar, Alok N. Choudhary, Shih-Fu Chang:
An Exploration of Parameter Redundancy in Deep Networks with Circulant Projections. ICCV 2015: 2857-2865 - [c28]Xu Zhang, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar, Shengjin Wang, Shih-Fu Chang:
Fast Orthogonal Projection Based on Kronecker Product. ICCV 2015: 2929-2937 - [c27]Dmitry Storcheus, Afshin Rostamizadeh, Sanjiv Kumar:
A Survey of Modern Questions and Challenges in Feature Extraction. FE@NIPS 2015: 1-18 - [c26]Jeffrey Pennington, Felix X. Yu, Sanjiv Kumar:
Spherical Random Features for Polynomial Kernels. NIPS 2015: 1846-1854 - [c25]Vikas Sindhwani, Tara N. Sainath, Sanjiv Kumar:
Structured Transforms for Small-Footprint Deep Learning. NIPS 2015: 3088-3096 - [p2]Felix X. Yu, Yunchao Gong, Sanjiv Kumar:
Fast Binary Embedding for High-Dimensional Data. Multimedia Data Mining and Analytics 2015: 347-371 - [i12]Yu Cheng, Felix X. Yu, Rogério Schmidt Feris, Sanjiv Kumar, Alok N. Choudhary, Shih-Fu Chang:
Fast Neural Networks with Circulant Projections. CoRR abs/1502.03436 (2015) - [i11]Felix X. Yu, Sanjiv Kumar, Henry A. Rowley, Shih-Fu Chang:
Compact Nonlinear Maps and Circulant Extensions. CoRR abs/1503.03893 (2015) - [i10]Krzysztof Choromanski, Sanjiv Kumar, Xiaofeng Liu:
Fast Online Clustering with Randomized Skeleton Sets. CoRR abs/1506.03425 (2015) - [i9]Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, David Simcha:
Quantization based Fast Inner Product Search. CoRR abs/1509.01469 (2015) - [i8]Jun Wang, Wei Liu, Sanjiv Kumar, Shih-Fu Chang:
Learning to Hash for Indexing Big Data - A Survey. CoRR abs/1509.05472 (2015) - [i7]Vikas Sindhwani, Tara N. Sainath, Sanjiv Kumar:
Structured Transforms for Small-Footprint Deep Learning. CoRR abs/1510.01722 (2015) - [i6]Anna Choromanska, Krzysztof Choromanski, Mariusz Bojarski, Tony Jebara, Sanjiv Kumar, Yann LeCun:
Binary embeddings with structured hashed projections. CoRR abs/1511.05212 (2015) - [i5]Felix X. Yu, Aditya Bhaskara, Sanjiv Kumar, Yunchao Gong, Shih-Fu Chang:
On Binary Embedding using Circulant Matrices. CoRR abs/1511.06480 (2015) - 2014
- [c24]Felix X. Yu, Sanjiv Kumar, Yunchao Gong, Shih-Fu Chang:
Circulant Binary Embedding. ICML 2014: 946-954 - [c23]Wei Liu, Cun Mu, Sanjiv Kumar, Shih-Fu Chang:
Discrete Graph Hashing. NIPS 2014: 3419-3427 - [r1]Sanjiv Kumar:
Discriminative Random Fields. Computer Vision, A Reference Guide 2014: 221-229 - [i4]Felix X. Yu, Sanjiv Kumar, Tony Jebara, Shih-Fu Chang:
On Learning with Label Proportions. CoRR abs/1402.5902 (2014) - [i3]Felix X. Yu, Sanjiv Kumar, Yunchao Gong, Shih-Fu Chang:
Circulant Binary Embedding. CoRR abs/1405.3162 (2014) - 2013
- [j10]Ameet Talwalkar, Sanjiv Kumar, Mehryar Mohri, Henry A. Rowley:
Large-scale SVD and manifold learning. J. Mach. Learn. Res. 14(1): 3129-3152 (2013) - [c22]Yunchao Gong, Sanjiv Kumar, Henry A. Rowley, Svetlana Lazebnik:
Learning Binary Codes for High-Dimensional Data Using Bilinear Projections. CVPR 2013: 484-491 - [c21]Felix X. Yu, Dong Liu, Sanjiv Kumar, Tony Jebara, Shih-Fu Chang:
\(\propto\)SVM for Learning with Label Proportions. ICML (3) 2013: 504-512 - [i2]Felix X. Yu, Dong Liu, Sanjiv Kumar, Tony Jebara, Shih-Fu Chang:
$\propto$SVM for learning with label proportions. CoRR abs/1306.0886 (2013) - 2012
- [j9]Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:
Sampling Methods for the Nyström Method. J. Mach. Learn. Res. 13: 981-1006 (2012) - [j8]Jun Wang, Sanjiv Kumar, Shih-Fu Chang:
Semi-Supervised Hashing for Large-Scale Search. IEEE Trans. Pattern Anal. Mach. Intell. 34(12): 2393-2406 (2012) - [c20]Junfeng He, Sanjiv Kumar, Shih-Fu Chang:
On the Difficulty of Nearest Neighbor Search. ICML 2012 - [c19]Wei Liu, Jun Wang, Yadong Mu, Sanjiv Kumar, Shih-Fu Chang:
Compact Hyperplane Hashing with Bilinear Functions. ICML 2012 - [c18]Yunchao Gong, Sanjiv Kumar, Vishal Verma, Svetlana Lazebnik:
Angular Quantization-based Binary Codes for Fast Similarity Search. NIPS 2012: 1205-1213 - [i1]Wei Liu, Jun Wang, Yadong Mu, Sanjiv Kumar, Shih-Fu Chang:
Compact Hyperplane Hashing with Bilinear Functions. CoRR abs/1206.4618 (2012) - 2011
- [c17]Wei Liu, Jun Wang, Sanjiv Kumar, Shih-Fu Chang:
Hashing with Graphs. ICML 2011: 1-8 - 2010
- [j7]Ameesh Makadia, Vladimir Pavlovic, Sanjiv Kumar:
Baselines for Image Annotation. Int. J. Comput. Vis. 90(1): 88-105 (2010) - [c16]Zheshen Wang, Ming Zhao, Yang Song, Sanjiv Kumar, Baoxin Li:
YouTubeCat: Learning to categorize wild web videos. CVPR 2010: 879-886 - [c15]Jun Wang, Sanjiv Kumar, Shih-Fu Chang:
Sequential Projection Learning for Hashing with Compact Codes. ICML 2010: 1127-1134 - [p1]Sanjiv Kumar:
Discriminative Graphical Models for Context-Based Classification. Computer Vision: Detection, Recognition and Reconstruction 2010: 109-134
2000 – 2009
- 2009
- [c14]Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:
On sampling-based approximate spectral decomposition. ICML 2009: 553-560 - [c13]Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:
Ensemble Nystrom Method. NIPS 2009: 1060-1068 - [c12]Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:
Sampling Techniques for the Nystrom Method. AISTATS 2009: 304-311 - 2008
- [c11]Minyoung Kim, Sanjiv Kumar, Vladimir Pavlovic, Henry A. Rowley:
Face tracking and recognition with visual constraints in real-world videos. CVPR 2008 - [c10]Ameet Talwalkar, Sanjiv Kumar, Henry A. Rowley:
Large-scale manifold learning. CVPR 2008 - [c9]Ameesh Makadia, Vladimir Pavlovic, Sanjiv Kumar:
A New Baseline for Image Annotation. ECCV (3) 2008: 316-329 - 2007
- [c8]Sanjiv Kumar, Henry A. Rowley:
Classification of Weakly-Labeled Data with Partial Equivalence Relations. ICCV 2007: 1-8 - 2006
- [j6]Sanjiv Kumar, Martial Hebert:
Discriminative Random Fields. Int. J. Comput. Vis. 68(2): 179-201 (2006) - 2005
- [c7]Carsten Rother, Sanjiv Kumar, Vladimir Kolmogorov, Andrew Blake:
Digital Tapestry. CVPR (1) 2005: 589-596 - [c6]Sanjiv Kumar, Jonas August, Martial Hebert:
Exploiting Inference for Approximate Parameter Learning in Discriminative Fields: An Empirical Study. EMMCVPR 2005: 153-168 - [c5]Sanjiv Kumar, Martial Hebert:
A Hierarchical Field Framework for Unified Context-Based Classification. ICCV 2005: 1284-1291 - 2004
- [c4]Bart C. Nabbe, Sanjiv Kumar, Martial Hebert:
Path planning with hallucinated worlds. IROS 2004: 3123-3130 - 2003
- [j5]Sanjiv Kumar, Alexander C. Loui, Martial Hebert:
An observation-constrained generative approach for probabilistic classification of image regions. Image Vis. Comput. 21(1): 87-97 (2003) - [c3]Sanjiv Kumar, Martial Hebert:
Man-Made Structure Detection in Natural Images using a Causal Multiscale Random Field. CVPR (1) 2003: 119-126 - [c2]Sanjiv Kumar, Martial Hebert:
Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification. ICCV 2003: 1150-1159 - [c1]Sanjiv Kumar, Martial Hebert:
Discriminative Fields for Modeling Spatial Dependencies in Natural Images. NIPS 2003: 1531-1538 - 2000
- [j4]Sanjiv Kumar, Irwan M. Kassim, Vijayan K. Asari:
Design of a vision-guided microrobotic colonoscopy system. Adv. Robotics 14(2): 87-104 (2000) - [j3]Vijayan K. Asari, Sanjiv Kumar, Irwan M. Kassim:
A Fully Autonomous Microrobotic Endoscopy System. J. Intell. Robotic Syst. 28(4): 325-341 (2000)
1990 – 1999
- 1999
- [j2]K. Vijayan Asari, Thambipillai Srikanthan, Sanjiv Kumar, D. Radhakrishnan:
A pipelined architecture for image segmentation by adaptive progressive thresholding. Microprocess. Microsystems 23(8-9): 493-499 (1999) - [j1]K. Vijayan Asari, Sanjiv Kumar, D. Radhakrishnan:
A New Approach for Nonlinear Distortion Correction in Endoscopic Images Based on Least Squares Estimation. IEEE Trans. Medical Imaging 18(4): 345-354 (1999)
Coauthor Index
aka: Daniel N. Holtmann-Rice
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:11 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint