default search action
Fabio Aiolli
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j29]Luca Bergamin, Mirko Polato, Fabio Aiolli:
Improving rule-based classifiers by Bayes point aggregation. Neurocomputing 613: 128699 (2025) - 2024
- [c68]Tommaso Carraro, Alessandro Daniele, Fabio Aiolli, Luciano Serafini:
Mitigating Data Sparsity via Neuro-Symbolic Knowledge Transfer. ECIR (3) 2024: 226-242 - [i9]Tommaso Carraro, Luciano Serafini, Fabio Aiolli:
LTNtorch: PyTorch Implementation of Logic Tensor Networks. CoRR abs/2409.16045 (2024) - 2023
- [j28]Alvise De Biasio, Andrea Montagna, Fabio Aiolli, Nicolò Navarin:
A systematic review of value-aware recommender systems. Expert Syst. Appl. 226: 120131 (2023) - [c67]Andrea Montagna, Alvise De Biasio, Nicolò Navarin, Fabio Aiolli:
Graph-based Explainable Recommendation Systems: Are We Rigorously Evaluating Explanations? HCAI4U@CHItaly 2023 - [c66]Tommaso Carraro, Alessandro Daniele, Fabio Aiolli, Luciano Serafini:
Mitigating Data Sparsity via Neuro-Symbolic Knowledge Transfer. KaRS@RecSys 2023: 69-79 - 2022
- [j27]Ivano Lauriola, Alberto Lavelli, Fabio Aiolli:
An introduction to Deep Learning in Natural Language Processing: Models, techniques, and tools. Neurocomputing 470: 443-456 (2022) - [j26]Mirko Polato, Guglielmo Faggioli, Fabio Aiolli:
PRL: A game theoretic large margin method for interpretable feature learning. Neurocomputing 479: 106-120 (2022) - [j25]Fabio Aiolli, Mauro Conti, Stjepan Picek, Mirko Polato:
On the feasibility of crawling-based attacks against recommender systems. J. Comput. Secur. 30(4): 599-621 (2022) - [c65]Tommaso Carraro, Alessandro Daniele, Fabio Aiolli, Luciano Serafini:
Logic Tensor Networks for Top-N Recommendation. AI*IA 2022: 110-123 - [c64]Mohammadmahdi Ghahramani, Fabio Aiolli:
Price direction prediction in financial markets, using Random Forest and Adaboost. ESANN 2022 - [c63]Mirko Polato, Fabio Aiolli, Luca Bergamin, Tommaso Carraro:
Bayes Point Rule Set Learning. ESANN 2022 - [c62]Tommaso Carraro, Mirko Polato, Luca Bergamin, Fabio Aiolli:
Conditioned Variational Autoencoder for Top-N Item Recommendation. ICANN (2) 2022: 785-796 - [c61]Luca Bergamin, Tommaso Carraro, Mirko Polato, Fabio Aiolli:
Novel Applications for VAE-based Anomaly Detection Systems. IJCNN 2022: 1-8 - [c60]Tommaso Carraro, Alessandro Daniele, Fabio Aiolli, Luciano Serafini:
Logic Tensor Networks for Top-N Recommendation. NeSy 2022: 1-14 - [i8]Fabio Aiolli, Luca Bergamin, Tommaso Carraro, Mirko Polato:
Bayes Point Rule Set Learning. CoRR abs/2204.05251 (2022) - [i7]Luca Bergamin, Tommaso Carraro, Mirko Polato, Fabio Aiolli:
Novel Applications for VAE-based Anomaly Detection Systems. CoRR abs/2204.12577 (2022) - 2021
- [j24]Ivano Lauriola, Fabio Aiolli, Alberto Lavelli, Fabio Rinaldi:
Learning adaptive representations for entity recognition in the biomedical domain. J. Biomed. Semant. 12(1): 10 (2021) - [j23]Mirko Polato, Fabio Aiolli:
Propositional Kernels. Entropy 23(8): 1020 (2021) - [c59]Mirko Polato, Alberto Gallinaro, Fabio Aiolli:
Privacy-Preserving Kernel Computation For Vertically Partitioned Data. ESANN 2021 - [c58]Ivano Lauriola, Alberto Lavelli, Alessandro Moschitti, Fabio Aiolli:
Exploring the structure of BERT through Kernel Learning. IJCNN 2021: 1-9 - 2020
- [j22]Ivano Lauriola, Claudio Gallicchio, Fabio Aiolli:
Enhancing deep neural networks via multiple kernel learning. Pattern Recognit. 101: 107194 (2020) - [j21]Ivano Lauriola, Mirko Polato, Fabio Aiolli:
Learning deep kernels in the space of monotone conjunctive polynomials. Pattern Recognit. Lett. 140: 200-206 (2020) - [c57]Pasquale Capuozzo, Ivano Lauriola, Carlo Strapparava, Fabio Aiolli, Giuseppe Sartori:
Automatic Detection of Cross-language Verbal Deception. CogSci 2020 - [c56]Ivano Lauriola, Alberto Lavelli, Fabio Aiolli:
Language processing in the era of deep learning. ESANN 2020: 597-606 - [c55]Ivano Lauriola, Stefano Campese, Alberto Lavelli, Fabio Rinaldi, Fabio Aiolli:
Exploring the feature space of character-level embeddings. ESANN 2020: 637-642 - [c54]Fabio Aiolli, Mauro Conti, Stjepan Picek, Mirko Polato:
Big Enough to Care Not Enough to Scare! Crawling to Attack Recommender Systems. ESORICS (2) 2020: 165-184 - [c53]Ivano Lauriola, Fabio Aiolli:
Monotone Deep Spectrum Kernels. ICANN (1) 2020: 207-219 - [c52]Pasquale Capuozzo, Ivano Lauriola, Carlo Strapparava, Fabio Aiolli, Giuseppe Sartori:
DecOp: A Multilingual and Multi-domain Corpus For Detecting Deception In Typed Text. LREC 2020: 1423-1430 - [c51]Guglielmo Faggioli, Mirko Polato, Fabio Aiolli:
Recency Aware Collaborative Filtering for Next Basket Recommendation. UMAP 2020: 80-87 - [c50]Tommaso Carraro, Mirko Polato, Fabio Aiolli:
A Look Inside the Black-Box: Towards the Interpretability of Conditioned Variational Autoencoder for Collaborative Filtering. UMAP (Adjunct Publication) 2020: 233-236 - [i6]Mirko Polato, Tommaso Carraro, Fabio Aiolli:
Conditioned Variational Autoencoder for top-N item recommendation. CoRR abs/2004.11141 (2020) - [i5]Ivano Lauriola, Fabio Aiolli:
MKLpy: a python-based framework for Multiple Kernel Learning. CoRR abs/2007.09982 (2020)
2010 – 2019
- 2019
- [j20]Mirko Polato, Fabio Aiolli:
Boolean kernels for rule based interpretation of support vector machines. Neurocomputing 342: 113-124 (2019) - [c49]Giovanni Da San Martino, Alessandro Sperduti, Fabio Aiolli, Alessandro Moschitti:
Efficient Online Learning for Mapping Kernels on Linguistic Structures. AAAI 2019: 3421-3428 - [c48]Mirko Polato, Fabio Aiolli:
Interpretable Preference Learning: A Game Theoretic Framework for Large Margin On-Line Feature and Rule Learning. AAAI 2019: 4723-4730 - [c47]Guglielmo Faggioli, Mirko Polato, Ivano Lauriola, Fabio Aiolli:
Evaluation of Tag Clusterings for User Profiling in Movie Recommendation. ICANN (Workshop) 2019: 456-468 - [c46]Mirko Polato, Guglielmo Faggioli, Ivano Lauriola, Fabio Aiolli:
Playing the Large Margin Preference Game. ICANN (2) 2019: 792-804 - [c45]Stefano Campese, Ivano Lauriola, Cristina Scarpazza, Giuseppe Sartori, Fabio Aiolli:
Psychiatric Disorders Classification with 3D Convolutional Neural Networks. INNSBDDL 2019: 48-57 - [c44]Ivano Lauriola, Mirko Polato, Guglielmo Faggioli, Fabio Aiolli:
A Preference-Learning Framework for Modeling Relational Data. INNSBDDL 2019: 359-369 - [c43]Fabio Aiolli, Mauro Conti, Ankit Gangwal, Mirko Polato:
Mind your wallet's privacy: identifying Bitcoin wallet apps and user's actions through network traffic analysis. SAC 2019: 1484-1491 - [c42]Guglielmo Faggioli, Mirko Polato, Fabio Aiolli:
Tag-Based User Profiling: A Game Theoretic Approach. UMAP (Adjunct Publication) 2019: 267-271 - 2018
- [j19]Guido Zampieri, Dinh Tran-Van, Michele Donini, Nicolò Navarin, Fabio Aiolli, Alessandro Sperduti, Giorgio Valle:
Scuba: scalable kernel-based gene prioritization. BMC Bioinform. 19(1): 23:1-23:12 (2018) - [j18]Mirko Polato, Ivano Lauriola, Fabio Aiolli:
A Novel Boolean Kernels Family for Categorical Data. Entropy 20(6): 444 (2018) - [j17]Mirko Polato, Fabio Aiolli:
Boolean kernels for collaborative filtering in top-N item recommendation. Neurocomputing 286: 214-225 (2018) - [j16]Fabio Aiolli, Michael Biehl, Luca Oneto:
Advances in artificial neural networks, machine learning and computational intelligence. Neurocomputing 298: 1-3 (2018) - [j15]Luca Oneto, Nicolò Navarin, Michele Donini, Sandro Ridella, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Learning With Kernels: A Local Rademacher Complexity-Based Analysis With Application to Graph Kernels. IEEE Trans. Neural Networks Learn. Syst. 29(10): 4660-4671 (2018) - [c41]Ivano Lauriola, Riccardo Sella, Fabio Aiolli, Alberto Lavelli, Fabio Rinaldi:
Learning Representations for Biomedical NER. NL4AI@AI*IA 2018: 83-94 - [c40]Ivano Lauriola, Mirko Polato, Fabio Aiolli:
The minimum effort maximum output principle applied to Multiple Kernel Learning. ESANN 2018 - [c39]Mirko Polato, Fabio Aiolli:
Boolean kernels for interpretable kernel machines. ESANN 2018 - [c38]Ivano Lauriola, Mirko Polato, Alberto Lavelli, Fabio Rinaldi, Fabio Aiolli:
Learning Preferences for Large Scale Multi-label Problems. ICANN (1) 2018: 546-555 - [c37]Mirko Polato, Fabio Aiolli:
A Game-Theoretic Framework for Interpretable Preference and Feature Learning. ICANN (1) 2018: 659-668 - [c36]Guglielmo Faggioli, Mirko Polato, Fabio Aiolli:
Efficient Similarity Based Methods For The Playlist Continuation Task. RecSys Challenge 2018: 15:1-15:6 - [i4]Mirko Polato, Fabio Aiolli:
Interpretable preference learning: a game theoretic framework for large margin on-line feature and rule learning. CoRR abs/1812.07895 (2018) - 2017
- [j14]Fabio Aiolli, Gaëlle Bonnet-Loosli, Romain Hérault:
Advances in artificial neural networks, machine learning and computational intelligence. Neurocomputing 268: 1-3 (2017) - [j13]Luca Oneto, Nicolò Navarin, Michele Donini, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Measuring the expressivity of graph kernels through Statistical Learning Theory. Neurocomputing 268: 4-16 (2017) - [j12]Mirko Polato, Fabio Aiolli:
Exploiting sparsity to build efficient kernel based collaborative filtering for top-N item recommendation. Neurocomputing 268: 17-26 (2017) - [j11]Michele Donini, Fabio Aiolli:
Learning deep kernels in the space of dot product polynomials. Mach. Learn. 106(9-10): 1245-1269 (2017) - [c35]Michele Donini, Nicolò Navarin, Ivano Lauriola, Fabio Aiolli, Fabrizio Costa:
Fast hyperparameter selection for graph kernels via subsampling and multiple kernel learning. ESANN 2017 - [c34]Ivano Lauriola, Michele Donini, Fabio Aiolli:
Learning dot-product polynomials for multiclass problems. ESANN 2017 - [c33]Ivano Lauriola, Mirko Polato, Fabio Aiolli:
Radius-Margin Ratio Optimization for Dot-Product Boolean Kernel Learning. ICANN (2) 2017: 183-191 - [c32]Mirko Polato, Ivano Lauriola, Fabio Aiolli:
Classification of Categorical Data in the Feature Space of Monotone DNFs. ICANN (2) 2017: 279-286 - [c31]Mirko Polato, Fabio Aiolli:
Disjunctive Boolean Kernels-based Collaborative Filtering for top-N Item Recommendation. IIR 2017: 97-100 - 2016
- [j10]Fabio Aiolli, Kerstin Bunte, Romain Hérault, Mikhail F. Kanevski:
Special issue: Advances in artificial neural networks, machine learning and computational intelligenceSelected papers from the 23rd European Symposium on Artificial Neural Networks (ESANN 2015). Neurocomputing 192: 1-2 (2016) - [j9]Matteo Ciman, Michele Donini, Ombretta Gaggi, Fabio Aiolli:
Stairstep recognition and counting in a serious Game for increasing users' physical activity. Pers. Ubiquitous Comput. 20(6): 1015-1033 (2016) - [c30]Fabio Aiolli, Mirko Polato:
Kernel based collaborative filtering for very large scale top-N item recommendation. ESANN 2016 - [c29]Luca Oneto, Nicolò Navarin, Michele Donini, Fabio Aiolli, Davide Anguita:
Advances in Learning with Kernels: Theory and Practice in a World of growing Constraints. ESANN 2016 - [c28]Luca Oneto, Nicolò Navarin, Michele Donini, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Measuring the Expressivity of Graph Kernels through the Rademacher Complexity. ESANN 2016 - [c27]Mirko Polato, Fabio Aiolli:
A preliminary study on a recommender system for the job recommendation challenge. RecSys Challenge 2016: 1:1-1:4 - [i3]Mirko Polato, Fabio Aiolli:
Exploiting sparsity to build efficient kernel based collaborative filtering for top-N item recommendation. CoRR abs/1612.05729 (2016) - [i2]Mirko Polato, Fabio Aiolli:
Disjunctive Boolean Kernels for Collaborative Filtering in Top-N Recommendation. CoRR abs/1612.07025 (2016) - 2015
- [j8]Fabio Aiolli, Michele Donini:
EasyMKL: a scalable multiple kernel learning algorithm. Neurocomputing 169: 215-224 (2015) - [j7]Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti:
An Efficient Topological Distance-Based Tree Kernel. IEEE Trans. Neural Networks Learn. Syst. 26(5): 1115-1120 (2015) - [c26]Verónica Bolón-Canedo, Michele Donini, Fabio Aiolli:
Feature and kernel learning. ESANN 2015 - [c25]Fabio Aiolli, Michele Donini, Nicolò Navarin, Alessandro Sperduti:
Multiple Graph-Kernel Learning. SSCI 2015: 1607-1614 - 2014
- [c24]Fabio Aiolli, Michele Donini:
Easy multiple kernel learning. ESANN 2014 - [c23]Fabio Aiolli, Michele Donini:
Learning Anisotropic RBF Kernels. ICANN 2014: 515-522 - [c22]Fabio Aiolli, Matteo Ciman, Michele Donini, Ombretta Gaggi:
ClimbTheWorld: real-time stairstep counting to increase physical activity. MobiQuitous 2014: 218-227 - [c21]Fabio Aiolli:
Convex AUC optimization for top-N recommendation with implicit feedback. RecSys 2014: 293-296 - 2013
- [c20]Fabio Aiolli:
A Preliminary Study on a Recommender System for the Million Songs Dataset Challenge. IIR 2013: 73-83 - [c19]Fabio Aiolli:
Efficient top-n recommendation for very large scale binary rated datasets. RecSys 2013: 273-280 - 2012
- [j6]Tiziana Sanavia, Fabio Aiolli, Giovanni Da San Martino, Andrea Bisognin, Barbara Di Camillo:
Improving biomarker list stability by integration of biological knowledge in the learning process. BMC Bioinform. 13(S-4): S22 (2012) - [c18]Fabio Aiolli:
Transfer Learning by Kernel Meta-Learning. ICML Unsupervised and Transfer Learning 2012: 81-95 - 2011
- [c17]Fabio Aiolli, Andrea Burattin, Alessandro Sperduti:
A Business Process Metric Based on the Alpha Algorithm Relations. Business Process Management Workshops (1) 2011: 141-146 - [c16]Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti:
Extending Tree Kernels with Topological Information. ICANN (1) 2011: 142-149 - 2010
- [c15]Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti:
A New Tree Kernel Based on SOM-SD. ICANN (2) 2010: 49-58 - [p3]Fabio Aiolli, Alessandro Sperduti:
A Preference Optimization Based Unifying Framework for Supervised Learning Problems. Preference Learning 2010: 19-42
2000 – 2009
- 2009
- [j5]Fabio Aiolli, Claudio E. Palazzi:
Enhancing Artificial Intelligence on a Real Mobile Game. Int. J. Comput. Games Technol. 2009: 456169:1-456169:9 (2009) - [j4]Fabio Aiolli, Riccardo Cardin, Fabrizio Sebastiani, Alessandro Sperduti:
Preferential text classification: learning algorithms and evaluation measures. Inf. Retr. 12(5): 559-580 (2009) - [j3]Fabio Aiolli, Giovanni Da San Martino, Markus Hagenbuchner, Alessandro Sperduti:
Learning Nonsparse Kernels by Self-Organizing Maps for Structured Data. IEEE Trans. Neural Networks 20(12): 1938-1949 (2009) - [c14]Fabio Aiolli, Michele De Filippo De Grazia, Alessandro Sperduti:
Application of the preference learning model to a human resources selection task. CIDM 2009: 203-210 - [c13]Fabio Aiolli, Alessandro Sperduti:
Supervised learning as preference optimization. ESANN 2009 - [c12]Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti:
Route kernels for trees. ICML 2009: 17-24 - [p2]Fabio Aiolli, Arianna Ciula:
A case study on the System for Paleographic Inspections (SPI): challenges and new developments. Computational Intelligence and Bioengineering 2009: 53-66 - [p1]Fabio Aiolli, Giovanni Da San Martino, Markus Hagenbuchner, Alessandro Sperduti:
Self-Organizing Maps for Structured Domains: Theory, Models, and Learning of Kernels. Innovations in Neural Information Paradigms and Applications 2009: 9-42 - [i1]Fabio Aiolli, Riccardo Cardin, Fabrizio Sebastiani, Alessandro Sperduti:
Preferential Text Classification: Learning Algorithms and Evaluation Measures. ERCIM News 2009(76) (2009) - 2008
- [c11]Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti:
A Kernel Method for the Optimization of the Margin Distribution. ICANN (1) 2008: 305-314 - [c10]Fabio Aiolli, Claudio Enrico Palazzi:
Enhancing Artificial Intelligence in Games by Learning the Opponent's Playing Style. ECS 2008: 1-10 - 2007
- [c9]Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, Alessandro Moschitti:
Efficient Kernel-based Learning for Trees. CIDM 2007: 308-315 - [c8]Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, Markus Hagenbuchner:
"Kernelized" Self-Organizing Maps for Structured Data. ESANN 2007: 19-24 - [c7]Fabio Aiolli, Fabrizio Sebastiani, Alessandro Sperduti:
Preference Learning for Category-Ranking based Interactive Text Categorization. IJCNN 2007: 2034-2039 - 2006
- [c6]Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, Alessandro Moschitti:
Fast On-line Kernel Learning for Trees. ICDM 2006: 787-791 - 2005
- [j2]Fabio Aiolli, Alessandro Sperduti:
Multiclass Classification with Multi-Prototype Support Vector Machines. J. Mach. Learn. Res. 6: 817-850 (2005) - [c5]Fabio Aiolli:
A Preference Model for Structured Supervised Learning Tasks. ICDM 2005: 557-560 - 2004
- [b1]Fabio Aiolli:
Large margin multiclass learning. University of Pisa, Italy, 2004 - [c4]Fabio Aiolli, Alessandro Sperduti:
Learning Preferences for Multiclass Problems. NIPS 2004: 17-24 - 2003
- [c3]Fabio Aiolli, Alessandro Sperduti:
Multi-prototype Support Vector Machine. IJCAI 2003: 541-546 - 2002
- [j1]Fabio Aiolli, Alessandro Sperduti:
A re-weighting strategy for improving margins. Artif. Intell. 137(1-2): 197-216 (2002) - [c2]Fabio Aiolli, Alessandro Sperduti:
An efficient SMO-like algorithm for multiclass SVM. NNSP 2002: 297-306 - 2001
- [c1]Fabio Aiolli, Alessandro Sperduti:
A Simple Additive Re-weighting Strategy for Improving Margins. IJCAI 2001: 927-934
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 20:48 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint