default search action
Prasad Tadepalli
Person information
- affiliation: Oregon State University, Corvallis, OR, USA
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j27]Siwen Yan, Sriraam Natarajan, Saket Joshi, Roni Khardon, Prasad Tadepalli:
Explainable models via compression of tree ensembles. Mach. Learn. 113(3): 1303-1328 (2024) - [c109]Yilin Yang, Stefan Lee, Prasad Tadepalli:
Language-Informed Beam Search Decoding for Multilingual Machine Translation. ACL (Findings) 2024: 15761-15772 - [c108]Rishab Balasubramanian, Jiawei Li, Prasad Tadepalli, Huazheng Wang, Qingyun Wu, Haoyu Zhao:
Adversarial Attacks on Combinatorial Multi-Armed Bandits. ICML 2024 - [i31]Yilin Yang, Stefan Lee, Prasad Tadepalli:
Language-Informed Beam Search Decoding for Multilingual Machine Translation. CoRR abs/2408.05738 (2024) - [i30]Michael Omori, Prasad Tadepalli:
Chess Rating Estimation from Moves and Clock Times Using a CNN-LSTM. CoRR abs/2409.11506 (2024) - 2023
- [j26]Harsha Kokel, Sriraam Natarajan, Balaraman Ravindran, Prasad Tadepalli:
RePReL: a unified framework for integrating relational planning and reinforcement learning for effective abstraction in discrete and continuous domains. Neural Comput. Appl. 35(23): 16877-16892 (2023) - [c107]Bhavan K. Vasu, Prasad Tadepalli:
Global Explanations for Image Classifiers (Student Abstract). AAAI 2023: 16352-16353 - [i29]Rishab Balasubramanian, Jiawei Li, Prasad Tadepalli, Huazheng Wang, Qingyun Wu, Haoyu Zhao:
Adversarial Attacks on Combinatorial Multi-Armed Bandits. CoRR abs/2310.05308 (2023) - 2022
- [c106]Harsha Kokel, Nikhilesh Prabhakar, Balaraman Ravindran, Erik Blasch, Prasad Tadepalli, Sriraam Natarajan:
Hybrid Deep RePReL: Integrating Relational Planning and Reinforcement Learning for Information Fusion. FUSION 2022: 1-8 - [c105]Alexander Matt Turner, Prasad Tadepalli:
Parametrically Retargetable Decision-Makers Tend To Seek Power. NeurIPS 2022 - [i28]Siwen Yan, Sriraam Natarajan, Saket Joshi, Roni Khardon, Prasad Tadepalli:
Explainable Models via Compression of Tree Ensembles. CoRR abs/2206.07904 (2022) - [i27]Alexander Matt Turner, Aseem Saxena, Prasad Tadepalli:
Formalizing the Problem of Side Effect Regularization. CoRR abs/2206.11812 (2022) - [i26]Alexander Matt Turner, Prasad Tadepalli:
Parametrically Retargetable Decision-Makers Tend To Seek Power. CoRR abs/2206.13477 (2022) - 2021
- [c104]Prasad Tadepalli, Stuart J. Russell:
PAC Learning of Causal Trees with Latent Variables. AAAI 2021: 9774-9781 - [c103]Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran, Prasad Tadepalli:
RePReL: Integrating Relational Planning and Reinforcement Learning for Effective Abstraction. ICAPS 2021: 533-541 - [c102]Yilin Yang, Akiko Eriguchi, Alexandre Muzio, Prasad Tadepalli, Stefan Lee, Hany Hassan:
Improving Multilingual Translation by Representation and Gradient Regularization. EMNLP (1) 2021: 7266-7279 - [c101]Aayam Kumar Shrestha, Stefan Lee, Prasad Tadepalli, Alan Fern:
DeepAveragers: Offline Reinforcement Learning By Solving Derived Non-Parametric MDPs. ICLR 2021 - [c100]Vivswan Shitole, Fuxin Li, Minsuk Kahng, Prasad Tadepalli, Alan Fern:
One Explanation is Not Enough: Structured Attention Graphs for Image Classification. NeurIPS 2021: 11352-11363 - [c99]Alexander Matt Turner, Logan Smith, Rohin Shah, Andrew Critch, Prasad Tadepalli:
Optimal Policies Tend To Seek Power. NeurIPS 2021: 23063-23074 - [i25]Yilin Yang, Akiko Eriguchi, Alexandre Muzio, Prasad Tadepalli, Stefan Lee, Hany Hassan:
Improving Multilingual Translation by Representation and Gradient Regularization. CoRR abs/2109.04778 (2021) - [i24]Fuxin Li, Zhongang Qi, Saeed Khorram, Vivswan Shitole, Prasad Tadepalli, Minsuk Kahng, Alan Fern:
From Heatmaps to Structural Explanations of Image Classifiers. CoRR abs/2109.06365 (2021) - [i23]Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran, Prasad Tadepalli:
Dynamic probabilistic logic models for effective abstractions in RL. CoRR abs/2110.08318 (2021) - 2020
- [c98]Murugeswari Issakkimuthu, Alan Fern, Prasad Tadepalli:
The Choice Function Framework for Online Policy Improvement. AAAI 2020: 10178-10185 - [c97]Hamed Shahbazi, Xiaoli Z. Fern, Reza Ghaeini, Prasad Tadepalli:
Relation Extraction with Explanation. ACL 2020: 6488-6494 - [c96]Alexander Matt Turner, Dylan Hadfield-Menell, Prasad Tadepalli:
Conservative Agency via Attainable Utility Preservation. AIES 2020: 385-391 - [c95]Yilin Yang, Longyue Wang, Shuming Shi, Prasad Tadepalli, Stefan Lee, Zhaopeng Tu:
On the Sub-Layer Functionalities of Transformer Decoder. EMNLP (Findings) 2020: 4799-4811 - [c94]Alexander Matt Turner, Neale Ratzlaff, Prasad Tadepalli:
Avoiding Side Effects in Complex Environments. NeurIPS 2020 - [i22]Hamed Shahbazi, Xiaoli Z. Fern, Reza Ghaeini, Prasad Tadepalli:
Relation Extraction with Explanation. CoRR abs/2005.14271 (2020) - [i21]Alexander Matt Turner, Neale Ratzlaff, Prasad Tadepalli:
Avoiding Side Effects in Complex Environments. CoRR abs/2006.06547 (2020) - [i20]Yilin Yang, Longyue Wang, Shuming Shi, Prasad Tadepalli, Stefan Lee, Zhaopeng Tu:
On the Sub-Layer Functionalities of Transformer Decoder. CoRR abs/2010.02648 (2020) - [i19]Aayam Shrestha, Stefan Lee, Prasad Tadepalli, Alan Fern:
DeepAveragers: Offline Reinforcement Learning by Solving Derived Non-Parametric MDPs. CoRR abs/2010.08891 (2020) - [i18]Vivswan Shitole, Fuxin Li, Minsuk Kahng, Prasad Tadepalli, Alan Fern:
Structured Attention Graphs for Understanding Deep Image Classifications. CoRR abs/2011.06733 (2020)
2010 – 2019
- 2019
- [j25]Ioana Baldini, Clark W. Barrett, Antonio Chella, Carlos Cinelli, David Gamez, Leilani H. Gilpin, Knut Hinkelmann, Dylan Holmes, Takashi Kido, Murat Kocaoglu, William F. Lawless, Alessio Lomuscio, Jamie C. Macbeth, Andreas Martin, Ranjeev Mittu, Evan Patterson, Donald Sofge, Prasad Tadepalli, Keiki Takadama, Shomir Wilson:
Reports of the AAAI 2019 Spring Symposium Series. AI Mag. 40(3): 59-66 (2019) - [c93]Alexander Matt Turner, Dylan Hadfield-Menell, Prasad Tadepalli:
Conservative Agency. AISafety@IJCAI 2019 - [c92]Mandana Hamidi-Haines, Zhongang Qi, Alan Fern, Fuxin Li, Prasad Tadepalli:
Interactive Naming for Explaining Deep Neural Networks: A Formative Study. IUI Workshops 2019 - [c91]Rasha Obeidat, Xiaoli Z. Fern, Hamed Shahbazi, Prasad Tadepalli:
Description-Based Zero-shot Fine-Grained Entity Typing. NAACL-HLT (1) 2019: 807-814 - [c90]Reza Ghaeini, Xiaoli Z. Fern, Hamed Shahbazi, Prasad Tadepalli:
Saliency Learning: Teaching the Model Where to Pay Attention. NAACL-HLT (1) 2019: 4016-4025 - [c89]Vivswan Shitole, Joseph Louis, Prasad Tadepalli:
Optimizing Earth Moving Operations Via Reinforcement Learning. WSC 2019: 2954-2965 - [i17]Reza Ghaeini, Xiaoli Z. Fern, Hamed Shahbazi, Prasad Tadepalli:
Saliency Learning: Teaching the Model Where to Pay Attention. CoRR abs/1902.08649 (2019) - [i16]Alexander Matt Turner, Dylan Hadfield-Menell, Prasad Tadepalli:
Conservative Agency via Attainable Utility Preservation. CoRR abs/1902.09725 (2019) - [i15]Hamed Shahbazi, Xiaoli Z. Fern, Reza Ghaeini, Rasha Obeidat, Prasad Tadepalli:
Entity-aware ELMo: Learning Contextual Entity Representation for Entity Disambiguation. CoRR abs/1908.05762 (2019) - [i14]Murugeswari Issakkimuthu, Alan Fern, Prasad Tadepalli:
The Choice Function Framework for Online Policy Improvement. CoRR abs/1910.00614 (2019) - 2018
- [c88]Murugeswari Issakkimuthu, Alan Fern, Prasad Tadepalli:
Training Deep Reactive Policies for Probabilistic Planning Problems. ICAPS 2018: 422-430 - [c87]Hamed Shahbazi, Xiaoli Z. Fern, Reza Ghaeini, Chao Ma, Rasha Mohammad Obeidat, Prasad Tadepalli:
Joint Neural Entity Disambiguation with Output Space Search. COLING 2018: 2170-2180 - [c86]Reza Ghaeini, Xiaoli Z. Fern, Hamed Shahbazi, Prasad Tadepalli:
Dependent Gated Reading for Cloze-Style Question Answering. COLING 2018: 3330-3345 - [c85]John Walker Orr, Prasad Tadepalli, Xiaoli Z. Fern:
Event Detection with Neural Networks: A Rigorous Empirical Evaluation. EMNLP 2018: 999-1004 - [c84]Reza Ghaeini, Xiaoli Z. Fern, Prasad Tadepalli:
Interpreting Recurrent and Attention-Based Neural Models: a Case Study on Natural Language Inference. EMNLP 2018: 4952-4957 - [c83]Durga Harish Dayapule, Aswin Raghavan, Prasad Tadepalli, Alan Fern:
Emergency Response Optimization using Online Hybrid Planning. IJCAI 2018: 4722-4728 - [i13]Reza Ghaeini, Xiaoli Z. Fern, Liang Huang, Prasad Tadepalli:
Event Nugget Detection with Forward-Backward Recurrent Neural Networks. CoRR abs/1802.05672 (2018) - [i12]Reza Ghaeini, Xiaoli Z. Fern, Hamed Shahbazi, Prasad Tadepalli:
Dependent Gated Reading for Cloze-Style Question Answering. CoRR abs/1805.10528 (2018) - [i11]Hamed Shahbazi, Xiaoli Z. Fern, Reza Ghaeini, Chao Ma, Rasha Obeidat, Prasad Tadepalli:
Joint Neural Entity Disambiguation with Output Space Search. CoRR abs/1806.07495 (2018) - [i10]Reza Ghaeini, Xiaoli Z. Fern, Prasad Tadepalli:
Interpreting Recurrent and Attention-Based Neural Models: a Case Study on Natural Language Inference. CoRR abs/1808.03894 (2018) - [i9]John Walker Orr, Prasad Tadepalli, Xiaoli Z. Fern:
Event Detection with Neural Networks: A Rigorous Empirical Evaluation. CoRR abs/1808.08504 (2018) - [i8]Reza Ghaeini, Xiaoli Z. Fern, Prasad Tadepalli:
Attentional Multi-Reading Sarcasm Detection. CoRR abs/1809.03051 (2018) - [i7]John Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa, Xiaoli Z. Fern, Thomas G. Dietterich:
Learning Scripts as Hidden Markov Models. CoRR abs/1809.03680 (2018) - [i6]Mandana Hamidi-Haines, Zhongang Qi, Alan Fern, Fuxin Li, Prasad Tadepalli:
Interactive Naming for Explaining Deep Neural Networks: A Formative Study. CoRR abs/1812.07150 (2018) - 2017
- [c82]Aswin Raghavan, Scott Sanner, Roni Khardon, Prasad Tadepalli, Alan Fern:
Hindsight Optimization for Hybrid State and Action MDPs. AAAI 2017: 3790-3796 - [c81]Chao Ma, Janardhan Rao Doppa, Prasad Tadepalli, Hamed Shahbazi, Xiaoli Z. Fern:
Multi-Task Structured Prediction for Entity Analysis: Search-Based Learning Algorithms. ACML 2017: 514-529 - [c80]Alan Fern, Robby Goetschalckx, Mandana Hamidi-Haines, Prasad Tadepalli:
Adaptive Submodularity with Varying Query Sets: An Application to Active Multi-label Learning. ALT 2017: 577-592 - [r4]Prasad Tadepalli:
Average-Reward Reinforcement Learning. Encyclopedia of Machine Learning and Data Mining 2017: 87-92 - [r3]Soumya Ray, Prasad Tadepalli:
Model-Based Reinforcement Learning. Encyclopedia of Machine Learning and Data Mining 2017: 852-855 - 2016
- [c79]Reza Ghaeini, Xiaoli Z. Fern, Liang Huang, Prasad Tadepalli:
Event Nugget Detection with Forward-Backward Recurrent Neural Networks. ACL (2) 2016 - [c78]Rasha Obeidat, Xiaoli Z. Fern, Prasad Tadepalli:
Label Embedding Approach for Transfer Learning. ICBO/BioCreative 2016 - [i5]Hamed Shahbazi, Chao Ma, Xiaoli Z. Fern, Prasad Tadepalli:
Cross Lingual Mention and Entity Embeddings for Cross-Lingual Entity Disambiguation. TAC 2016 - 2015
- [c77]Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth Mannem, Xiaoli Z. Fern, Thomas G. Dietterich, Prasad Tadepalli:
Learning Greedy Policies for the Easy-First Framework. AAAI 2015: 2339-2345 - [c76]Hao Cui, Roni Khardon, Alan Fern, Prasad Tadepalli:
Factored MCTS for Large Scale Stochastic Planning. AAAI 2015: 3261-3267 - [c75]Murugeswari Issakkimuthu, Alan Fern, Roni Khardon, Prasad Tadepalli, Shan Xue:
Hindsight Optimization for Probabilistic Planning with Factored Actions. ICAPS 2015: 120-128 - [c74]Robby Goetschalckx, Alan Fern, Prasad Tadepalli:
Multitask Coactive Learning. IJCAI 2015: 3518-3524 - [c73]Mandana Hamidi, Prasad Tadepalli, Robby Goetschalckx, Alan Fern:
Active Imitation Learning of Hierarchical Policies. IJCAI 2015: 3554-3560 - [c72]Aswin Raghavan, Roni Khardon, Prasad Tadepalli, Alan Fern:
Memory-Effcient Symbolic Online Planning for Factored MDPs. UAI 2015: 732-741 - 2014
- [j24]Alan Fern, Sriraam Natarajan, Kshitij Judah, Prasad Tadepalli:
A Decision-Theoretic Model of Assistance. J. Artif. Intell. Res. 50: 71-104 (2014) - [j23]Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli:
HC-Search: A Learning Framework for Search-based Structured Prediction. J. Artif. Intell. Res. 50: 369-407 (2014) - [j22]Aaron Wilson, Alan Fern, Prasad Tadepalli:
Using trajectory data to improve bayesian optimization for reinforcement learning. J. Mach. Learn. Res. 15(1): 253-282 (2014) - [j21]Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli:
Structured prediction via output space search. J. Mach. Learn. Res. 15(1): 1317-1350 (2014) - [j20]Kshitij Judah, Alan Paul Fern, Thomas G. Dietterich, Prasad Tadepalli:
Active lmitation learning: formal and practical reductions to I.I.D. learning. J. Mach. Learn. Res. 15(1): 3925-3963 (2014) - [c71]John Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa, Xiaoli Z. Fern, Thomas G. Dietterich:
Learning Scripts as Hidden Markov Models. AAAI 2014: 1565-1571 - [c70]Janardhan Rao Doppa, Jun Yu, Chao Ma, Alan Fern, Prasad Tadepalli:
HC-Search for Multi-Label Prediction: An Empirical Study. AAAI 2014: 1795-1801 - [c69]Robby Goetschalckx, Alan Fern, Prasad Tadepalli:
Coactive Learning for Locally Optimal Problem Solving. AAAI 2014: 1824-1830 - [c68]Kshitij Judah, Alan Fern, Prasad Tadepalli, Robby Goetschalckx:
Imitation Learning with Demonstrations and Shaping Rewards. AAAI 2014: 1890-1896 - [c67]Chao Ma, Janardhan Rao Doppa, John Walker Orr, Prashanth Mannem, Xiaoli Z. Fern, Thomas G. Dietterich, Prasad Tadepalli:
Prune-and-Score: Learning for Greedy Coreference Resolution. EMNLP 2014: 2115-2126 - [i4]Robby Goetschalckx, Alan Fern, Prasad Tadepalli:
Coactive Learning for Locally Optimal Problem Solving. CoRR abs/1404.5511 (2014) - 2013
- [c66]Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli:
HC-Search: Learning Heuristics and Cost Functions for Structured Prediction. AAAI 2013: 253-259 - [c65]Saket Joshi, Roni Khardon, Prasad Tadepalli, Alan Fern, Aswin Raghavan:
Relational Markov Decision Processes: Promise and Prospects. StarAI@AAAI 2013 - [c64]Sriraam Natarajan, Phillip Odom, Saket Joshi, Tushar Khot, Kristian Kersting, Prasad Tadepalli:
Accelerating Imitation Learning in Relational Domains via Transfer by Initialization. ILP 2013: 64-75 - [c63]Aswin Raghavan, Roni Khardon, Alan Fern, Prasad Tadepalli:
Symbolic Opportunistic Policy Iteration for Factored-Action MDPs. NIPS 2013: 2499-2507 - [c62]Saket Joshi, Roni Khardon, Prasad Tadepalli, Aswin Raghavan, Alan Fern:
Solving Relational MDPs with Exogenous Events and Additive Rewards. ECML/PKDD (1) 2013: 178-193 - [i3]Saket Joshi, Roni Khardon, Prasad Tadepalli, Aswin Raghavan, Alan Fern:
Solving Relational MDPs with Exogenous Events and Additive Rewards. CoRR abs/1306.6302 (2013) - 2012
- [j19]Sriraam Natarajan, Prasad Tadepalli, Alan Fern:
A relational hierarchical model for decision-theoretic assistance. Knowl. Inf. Syst. 32(2): 329-349 (2012) - [j18]Xiaoqin Zhang, Bhavesh Shrestha, Sung Wook Yoon, Subbarao Kambhampati, Phillip DiBona, Jinhong K. Guo, Daniel McFarlane, Martin O. Hofmann, Kenneth R. Whitebread, Darren Scott Appling, Elizabeth T. Whitaker, Ethan Trewhitt, Li Ding, James Michaelis, Deborah L. McGuinness, James A. Hendler, Janardhan Rao Doppa, Charles Parker, Thomas G. Dietterich, Prasad Tadepalli, Weng-Keen Wong, Derek T. Green, Antons Rebguns, Diana F. Spears, Ugur Kuter, Geoffrey Levine, Gerald DeJong, Reid MacTavish, Santiago Ontañón, Jainarayan Radhakrishnan, Ashwin Ram, Hala Mostafa, Huzaifa Zafar, Chongjie Zhang, Daniel D. Corkill, Victor R. Lesser, Zhexuan Song:
An Ensemble Architecture for Learning Complex Problem-Solving Techniques from Demonstration. ACM Trans. Intell. Syst. Technol. 3(4): 75:1-75:38 (2012) - [c61]Aswin Raghavan, Saket Joshi, Alan Fern, Prasad Tadepalli, Roni Khardon:
Planning in Factored Action Spaces with Symbolic Dynamic Programming. AAAI 2012: 1802-1808 - [c60]Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli:
Output Space Search for Structured Prediction. ICML 2012 - [c59]Aaron Wilson, Alan Fern, Prasad Tadepalli:
A Bayesian Approach for Policy Learning from Trajectory Preference Queries. NIPS 2012: 1142-1150 - [c58]Sriraam Natarajan, Phillip Odom, Saket Joshi, Tushar Khot, Kristian Kersting, Prasad Tadepalli:
Accelarating Imitation Learning in Relational Domains via Transfer by Initialization. StarAI@UAI 2012 - [c57]Aaron Wilson, Alan Fern, Prasad Tadepalli:
Transfer Learning in Sequential Decision Problems: A Hierarchical Bayesian Approach. ICML Unsupervised and Transfer Learning 2012: 217-227 - 2011
- [j17]Neville Mehta, Soumya Ray, Prasad Tadepalli, Thomas G. Dietterich:
Automatic Discovery and Transfer of Task Hierarchies in Reinforcement Learning. AI Mag. 32(1): 35-50 (2011) - [j16]Alan Fern, Roni Khardon, Prasad Tadepalli:
The first learning track of the international planning competition. Mach. Learn. 84(1-2): 81-107 (2011) - [c56]Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik:
Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach. IJCAI 2011: 1414-1420 - [c55]Shahed Sorower, Thomas G. Dietterich, Janardhan Rao Doppa, John Walker Orr, Prasad Tadepalli, Xiaoli Z. Fern:
Inverting Grice's Maxims to Learn Rules from Natural Language Extractions. NIPS 2011: 1053-1061 - [c54]Neville Mehta, Prasad Tadepalli, Alan Fern:
Autonomous Learning of Action Models for Planning. NIPS 2011: 2465-2473 - [c53]Janardhan Rao Doppa, Shahed Sorower, Mohammad NasrEsfahani, John Walker Orr, Thomas G. Dietterich, Xiaoli Z. Fern, Prasad Tadepalli, Jed Irvine:
Learning Rules from Incomplete Examples via Implicit Mention Models. ACML 2011: 197-212 - 2010
- [c52]Alan Fern, Prasad Tadepalli:
A Computational Decision Theory for Interactive Assistants. Interactive Decision Theory and Game Theory 2010 - [c51]Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik:
Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models. StarAI@AAAI 2010 - [c50]Aaron Wilson, Alan Fern, Prasad Tadepalli:
Bayesian Policy Search for Multi-Agent Role Discovery. AAAI 2010: 624-629 - [c49]Aaron Wilson, Alan Fern, Prasad Tadepalli:
Bayesian role discovery for multi-agent reinforcement learning. AAMAS 2010: 1587-1588 - [c48]Sriraam Natarajan, Gautam Kunapuli, Kshitij Judah, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik:
Multi-Agent Inverse Reinforcement Learning. ICMLA 2010: 395-400 - [c47]Alan Fern, Prasad Tadepalli:
A Computational Decision Theory for Interactive Assistants. NIPS 2010: 577-585 - [c46]Janardhan Rao Doppa, Jun Yu, Prasad Tadepalli, Lise Getoor:
Learning Algorithms for Link Prediction Based on Chance Constraints. ECML/PKDD (1) 2010: 344-360 - [c45]Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik:
Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models. ECML/PKDD (2) 2010: 434-450 - [c44]Aaron Wilson, Alan Fern, Prasad Tadepalli:
Incorporating Domain Models into Bayesian Optimization for RL. ECML/PKDD (3) 2010: 467-482 - [r2]Prasad Tadepalli:
Average-Reward Reinforcement Learning. Encyclopedia of Machine Learning 2010: 64-68 - [r1]Soumya Ray, Prasad Tadepalli:
Model-Based Reinforcement Learning. Encyclopedia of Machine Learning 2010: 690-693
2000 – 2009
- 2009
- [j15]Charles Parker, Yasemin Altun, Prasad Tadepalli:
Guest editorial: special issue on structured prediction. Mach. Learn. 77(2-3): 161-164 (2009) - [c43]Ronald Bjarnason, Alan Fern, Prasad Tadepalli:
Lower Bounding Klondike Solitaire with Monte-Carlo Planning. ICAPS 2009 - [c42]Scott Proper, Prasad Tadepalli:
Solving multiagent assignment Markov decision processes. AAMAS (1) 2009: 681-688 - [c41]Ronald Bjarnason, Prasad Tadepalli, Alan Fern, Carl Niedner:
Simulation-based Optimization of Resource Placement and Emergency Response. IAAI 2009 - [c40]Xiaoqin Zhang, Sung Wook Yoon, Phillip DiBona, Darren Scott Appling, Li Ding, Janardhan Rao Doppa, Derek T. Green, Jinhong K. Guo, Ugur Kuter, Geoffrey Levine, Reid MacTavish, Daniel McFarlane, James Michaelis, Hala Mostafa, Santiago Ontañón, Charles Parker, Jainarayan Radhakrishnan, Antons Rebguns, Bhavesh Shrestha, Zhexuan Song, Ethan Trewhitt, Huzaifa Zafar, Chongjie Zhang, Daniel D. Corkill, Gerald DeJong, Thomas G. Dietterich, Subbarao Kambhampati, Victor R. Lesser, Deborah L. McGuinness, Ashwin Ram, Diana F. Spears, Prasad Tadepalli, Elizabeth T. Whitaker, Weng-Keen Wong, James A. Hendler, Martin O. Hofmann, Kenneth R. Whitebread:
An Ensemble Learning and Problem Solving Architecture for Airspace Management. IAAI 2009 - [c39]Sriraam Natarajan, Prasad Tadepalli, Gautam Kunapuli, Jude W. Shavlik:
Learning Parameters for Relational Probabilistic Models with Noisy-Or Combining Rule. ICMLA 2009: 141-146 - [c38]Scott Proper, Prasad Tadepalli:
Multiagent Transfer Learning via Assignment-Based Decomposition. ICMLA 2009: 345-350 - [c37]Scott Proper, Prasad Tadepalli:
Transfer Learning via Relational Templates. ILP 2009: 186-193 - 2008
- [j14]Sriraam Natarajan, Prasad Tadepalli, Thomas G. Dietterich, Alan Fern:
Learning first-order probabilistic models with combining rules. Ann. Math. Artif. Intell. 54(1-3): 223-256 (2008) - [j13]Prasad Tadepalli:
Learning to Solve Problems from Exercises. Comput. Intell. 24(4): 257-291 (2008) - [j12]Hendrik Blockeel, Jude W. Shavlik, Prasad Tadepalli:
Guest editors' introduction: special issue on inductive logic programming (ILP-2007). Mach. Learn. 73(1): 1-2 (2008) - [j11]Thomas G. Dietterich, Pedro M. Domingos, Lise Getoor, Stephen H. Muggleton, Prasad Tadepalli:
Structured machine learning: the next ten years. Mach. Learn. 73(1): 3-23 (2008) - [j10]Neville Mehta, Sriraam Natarajan, Prasad Tadepalli, Alan Fern:
Transfer in variable-reward hierarchical reinforcement learning. Mach. Learn. 73(3): 289-312 (2008) - [c36]Neville Mehta, Soumya Ray, Prasad Tadepalli, Thomas G. Dietterich:
Automatic discovery and transfer of MAXQ hierarchies. ICML 2008: 648-655 - [c35]Sriraam Natarajan, Hung Hai Bui, Prasad Tadepalli, Kristian Kersting, Weng-Keen Wong:
Logical Hierarchical Hidden Markov Models for Modeling User Activities. ILP 2008: 192-209 - [e1]Hendrik Blockeel, Jan Ramon, Jude W. Shavlik, Prasad Tadepalli:
Inductive Logic Programming, 17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers. Lecture Notes in Computer Science 4894, Springer 2008, ISBN 978-3-540-78468-5 [contents] - 2007
- [j9]Ronald Bjarnason, Prasad Tadepalli, Alan Fern:
Searching Solitaire in Real Time. J. Int. Comput. Games Assoc. 30(3): 131-142 (2007) - [c34]Sriraam Natarajan, Kshitij Judah, Prasad Tadepalli, Alan Fern:
A Decision-Theoretic Model of Assistance - Evaluation, Extensions and Open Problems. AAAI Spring Symposium: Interaction Challenges for Intelligent Assistants 2007: 90-97 - [c33]Sriraam Natarajan, Kshitij Judah, Prasad Tadepalli, Alan Fern:
A Decision-Theoretic Model of Assistance - Evaluation, Extensions and Open Problems. Interaction Challenges for Intelligent Assistants 2007: 90-97 - [c32]Charles Parker, Alan Fern, Prasad Tadepalli:
Learning for efficient retrieval of structured data with noisy queries. ICML 2007: 729-736 - [c31]Aaron Wilson, Alan Fern, Soumya Ray, Prasad Tadepalli:
Multi-task reinforcement learning: a hierarchical Bayesian approach. ICML 2007: 1015-1022 - [c30]Alan Fern, Sriraam Natarajan, Kshitij Judah, Prasad Tadepalli:
A Decision-Theoretic Model of Assistance. IJCAI 2007: 1879-1884 - [c29]Sriraam Natarajan, Prasad Tadepalli, Alan Fern:
A Relational Hierarchical Model for Decision-Theoretic Assistance. ILP 2007: 175-190 - [i2]Sriraam Natarajan, Prasad Tadepalli, Alan Fern:
Exploiting prior knowledge in Intelligent Assistants - Combining relational models with hierarchies. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007 - 2006
- [c28]Charles Parker, Alan Fern, Prasad Tadepalli:
Gradient Boosting for Sequence Alignment. AAAI 2006: 452-457 - [c27]Scott Proper, Prasad Tadepalli:
Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery. ECML 2006: 735-742 - 2005
- [c26]Sriraam Natarajan, Prasad Tadepalli:
Dynamic preferences in multi-criteria reinforcement learning. ICML 2005: 601-608 - [c25]Sriraam Natarajan, Prasad Tadepalli, Eric Altendorf, Thomas G. Dietterich, Alan Fern, Angelo C. Restificar:
Learning first-order probabilistic models with combining rules. ICML 2005: 609-616 - 2002
- [c24]Michael Chisholm, Prasad Tadepalli:
Learning Decision Rules by Randomized Iterative Local Search. ICML 2002: 75-82 - [c23]Sandeep Seri, Prasad Tadepalli:
Model-based Hierarchical Average-reward Reinforcement Learning. ICML 2002: 562-569 - 2001
- [j8]Thomas R. Amoth, Paul Cull, Prasad Tadepalli:
On Exact Learning of Unordered Tree Patterns. Mach. Learn. 44(3): 211-243 (2001)
1990 – 1999
- 1999
- [j7]Chandra Reddy, Prasad Tadepalli:
Learning Horn Definitions: Theory and an Application to Planning. New Gener. Comput. 17(1): 77-98 (1999) - [c22]Thomas R. Amoth, Paul Cull, Prasad Tadepalli:
Exact Learning of Unordered Tree Patterns from Queries. COLT 1999: 323-332 - 1998
- [j6]Prasad Tadepalli, DoKyeong Ok:
Model-Based Average Reward Reinforcement Learning. Artif. Intell. 100(1-2): 177-223 (1998) - [j5]Prasad Tadepalli, Stuart Russell:
Learning from Examples and Membership Queries with Structured Determinations. Mach. Learn. 32(3): 245-295 (1998) - [c21]Thomas R. Amoth, Paul Cull, Prasad Tadepalli:
Exact Learning of Tree Patterns from Queries and Counterexamples. COLT 1998: 175-186 - [c20]Chandra Reddy, Prasad Tadepalli:
Learning First-Order Acyclic Horn Programs from Entailment. ICML 1998: 472-480 - [c19]Chandra Reddy, Prasad Tadepalli:
Learning First-Order Acyclic Horn Programs from Entailment. ILP 1998: 23-37 - 1997
- [c18]Ray Liere, Prasad Tadepalli:
Active Learning with Committees for Text Categorization. AAAI/IAAI 1997: 591-596 - [c17]Ray Liere, Prasad Tadepalli:
Active Learning with Committees. AAAI/IAAI 1997: 838 - [c16]Chandra Reddy, Prasad Tadepalli:
Learning Goal-Decomposition Rules Using Exercises. AAAI/IAAI 1997: 843 - [c15]Chandra Reddy, Prasad Tadepalli:
Learning Goal-Decomposition Rules using Exercises. ICML 1997: 278-286 - [c14]Prasad Tadepalli, Thomas G. Dietterich:
Hierarchical Explanation-Based Reinforcement Learning. ICML 1997: 358-366 - [c13]Chandra Reddy, Prasad Tadepalli:
Learning Horn Definitions with Equivalence and Membership Queries. ILP 1997: 243-255 - 1996
- [j4]Prasad Tadepalli, Balas K. Natarajan:
A Formal Framework for Speedup Learning from Problems and Solutions. J. Artif. Intell. Res. 4: 445-475 (1996) - [c12]DoKyeong Ok, Prasad Tadepalli:
Auto-Exploratory Average Reward Reinforcement Learning. AAAI/IAAI, Vol. 1 1996: 881-887 - [c11]Chandra Reddy, Prasad Tadepalli, Silvana Roncagliolo:
Theory-guided Empirical Speedup Learning of Goal Decomposition Rules. ICML 1996: 409-417 - [c10]Prasad Tadepalli, DoKyeong Ok:
Scaling Up Average Reward Reinforcement Learning by Approximating the Domain Models and the Value Function. ICML 1996: 471-479 - [i1]Prasad Tadepalli, Balas K. Natarajan:
A Formal Framework for Speedup Learning from Problems and Solutions. CoRR cs.AI/9605105 (1996) - 1994
- [j3]Sridhar Mahadevan, Prasad Tadepalli:
Quantifying Prior Determination Knowledge Using the PAC Learning Model. Mach. Learn. 17(1): 69-105 (1994) - 1993
- [j2]Sridhar Mahadevan, Tom M. Mitchell, Jack Mostow, Louis I. Steinberg, Prasad Tadepalli:
An Apprentice-Based Approach to Knowledge Acquisition. Artif. Intell. 64(1): 1-52 (1993) - [c9]Prasad Tadepalli:
Learning from Queries and Examples with Tree-structured Bias. ICML 1993: 322-329 - 1992
- [c8]Prasad Tadepalli:
A Theory of Unsupervised Speedup Learning. AAAI 1992: 229-234 - 1991
- [c7]Prasad Tadepalli:
Learning with Incrutable Theories. ML 1991: 544-548 - [c6]Prasad Tadepalli:
A Formalization of Explanation-Based Macro-operator Learning. IJCAI 1991: 616-622 - 1990
- [j1]Sholom M. Weiss, Robert S. Galen, Prasad Tadepalli:
Maximizing the Predictive Value of Production Rules. Artif. Intell. 45(1-2): 47-71 (1990)
1980 – 1989
- 1989
- [c5]Prasad Tadepalli:
Planning Approximate Plans for Use in the Real World. ML 1989: 224-228 - [c4]Prasad Tadepalli:
Lazy ExplanationBased Learning: A Solution to the Intractable Theory Problem. IJCAI 1989: 694-700 - 1988
- [c3]Sridhar Mahadevan, Prasad Tadepalli:
On the Tractability of Learning from Incomplete Theories. ML 1988: 235-241 - [c2]Balas K. Natarajan, Prasad Tadepalli:
Two New Frameworks for Learning. ML 1988: 402-415 - 1987
- [c1]Sholom M. Weiss, Robert S. Galen, Prasad Tadepalli:
Optimizing the Predictive Value of Diagnostic Decision Rules. AAAI 1987: 521-527
Coauthor Index
aka: Alan Paul Fern
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-15 20:47 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint