default search action
Jochen De Weerdt
Person information
- affiliation: KU Leuven, Belgium
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j48]Margot Geerts, Seppe vanden Broucke, Jochen De Weerdt:
GeoRF: a geospatial random forest. Data Min. Knowl. Discov. 38(6): 3414-3448 (2024) - [j47]Johannes De Smedt, Jochen De Weerdt:
Predictive process model monitoring using long short-term memory networks. Eng. Appl. Artif. Intell. 133: 108295 (2024) - [j46]Philipp Borchert, Kristof Coussement, Jochen De Weerdt, Arno De Caigny:
Industry-sensitive language modeling for business. Eur. J. Oper. Res. 315(2): 691-702 (2024) - [j45]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Validation set sampling strategies for predictive process monitoring. Inf. Syst. 121: 102330 (2024) - [j44]Björn Rafn Gunnarsson, Seppe vanden Broucke, Jochen De Weerdt:
LS-ICE: A Load State Intercase Encoding framework for improved predictive monitoring of business processes. Inf. Syst. 125: 102432 (2024) - [j43]Carlos Ortega Vázquez, Seppe vanden Broucke, Jochen De Weerdt:
Hellinger distance decision trees for PU learning in imbalanced data sets. Mach. Learn. 113(7): 4547-4578 (2024) - [j42]Rafaël Van Belle, Jochen De Weerdt:
SHINE: A Scalable Heterogeneous Inductive Graph Neural Network for Large Imbalanced Datasets. IEEE Trans. Knowl. Data Eng. 36(9): 4904-4915 (2024) - [c69]Zahra Ahmadi, Jochen De Weerdt, Estefanía Serral Asensio:
A Novel Contextualization Method for Process Discovery Using Activity Specialization Hierarchies. BPMDS/EMMSAD@CAiSE 2024: 143-155 - [c68]Brecht Wuyts, Seppe K. L. M. vanden Broucke, Jochen De Weerdt:
SuTraN: an Encoder-Decoder Transformer for Full-Context-Aware Suffix Prediction of Business Processes. ICPM 2024: 17-24 - [c67]Philipp Borchert, Jochen De Weerdt, Marie-Francine Moens:
Efficient Information Extraction in Few-Shot Relation Classification through Contrastive Representation Learning. NAACL (Short Papers) 2024: 638-646 - [c66]Margot Geerts, Seppe vanden Broucke, Jochen De Weerdt:
A Spatial Loss Function for Gradient Boosted Trees. STRL@IJCAI 2024 - [e5]Jochen De Weerdt, Luise Pufahl:
Business Process Management Workshops - BPM 2023 International Workshops, Utrecht, The Netherlands, September 11-15, 2023, Revised Selected Papers. Lecture Notes in Business Information Processing 492, Springer 2024, ISBN 978-3-031-50973-5 [contents] - [e4]Jochen De Weerdt, Giovanni Meroni, Han van der Aa, Karolin Winter:
Doctoral Consortium and Demo Track 2024 at the International Conference on Process Mining 2024 co-located with the 6th International Conference on Process Mining (ICPM 2024), Copenhagen, Denmark, October 15, 2024. CEUR Workshop Proceedings 3783, CEUR-WS.org 2024 [contents] - [i18]Philipp Borchert, Jochen De Weerdt, Marie-Francine Moens:
Efficient Information Extraction in Few-Shot Relation Classification through Contrastive Representation Learning. CoRR abs/2403.16543 (2024) - [i17]Manon Reusens, Philipp Borchert, Jochen De Weerdt, Bart Baesens:
Native Design Bias: Studying the Impact of English Nativeness on Language Model Performance. CoRR abs/2406.17385 (2024) - [i16]Lien Bosmans, Jari Peeperkorn, Alexandre Goossens, Giovanni Lugaresi, Johannes De Smedt, Jochen De Weerdt:
Dynamic and Scalable Data Preparation for Object-Centric Process Mining. CoRR abs/2410.00596 (2024) - 2023
- [j41]Carlos Ortega Vázquez, Seppe vanden Broucke, Jochen De Weerdt:
A two-step anomaly detection based method for PU classification in imbalanced data sets. Data Min. Knowl. Discov. 37(3): 1301-1325 (2023) - [j40]Johannes De Smedt, Anton Yeshchenko, Artem Polyvyanyy, Jochen De Weerdt, Jan Mendling:
Process model forecasting and change exploration using time series analysis of event sequence data. Data Knowl. Eng. 145: 102145 (2023) - [j39]Rafaël Van Belle, Bart Baesens, Jochen De Weerdt:
CATCHM: A novel network-based credit card fraud detection method using node representation learning. Decis. Support Syst. 164: 113866 (2023) - [j38]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Global conformance checking measures using shallow representation and deep learning. Eng. Appl. Artif. Intell. 123(Part): 106393 (2023) - [j37]Philipp Borchert, Kristof Coussement, Arno De Caigny, Jochen De Weerdt:
Extending business failure prediction models with textual website content using deep learning. Eur. J. Oper. Res. 306(1): 348-357 (2023) - [j36]Margot Geerts, Seppe vanden Broucke, Jochen De Weerdt:
A Survey of Methods and Input Data Types for House Price Prediction. ISPRS Int. J. Geo Inf. 12(5): 200 (2023) - [j35]Arthur H. M. ter Hofstede, Agnes Koschmider, Andrea Marrella, Robert Andrews, Dominik Andreas Fischer, Sareh Sadeghianasl, Moe Thandar Wynn, Marco Comuzzi, Jochen De Weerdt, Kanika Goel, Niels Martin, Pnina Soffer:
Process-Data Quality: The True Frontier of Process Mining. ACM J. Data Inf. Qual. 15(3): 29:1-29:21 (2023) - [j34]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Can recurrent neural networks learn process model structure? J. Intell. Inf. Syst. 61(1): 27-51 (2023) - [j33]Monique Snoeck, Charlotte Verbruggen, Johannes De Smedt, Jochen De Weerdt:
Supporting data-aware processes with MERODE. Softw. Syst. Model. 22(6): 1779-1802 (2023) - [j32]Björn Rafn Gunnarsson, Seppe vanden Broucke, Jochen De Weerdt:
A Direct Data Aware LSTM Neural Network Architecture for Complete Remaining Trace and Runtime Prediction. IEEE Trans. Serv. Comput. 16(4): 2330-2342 (2023) - [c65]Brecht Wuyts, Hans Weytjens, Seppe vanden Broucke, Jochen De Weerdt:
DyLoPro: Profiling the Dynamics of Event Logs. BPM 2023: 146-162 - [c64]Hans Weytjens, Wouter Verbeke, Jochen De Weerdt:
Timed Process Interventions: Causal Inference vs. Reinforcement Learning. Business Process Management Workshops 2023: 245-258 - [c63]Yannis Bertrand, Jochen De Weerdt, Estefanía Serral:
A Novel Multi-perspective Trace Clustering Technique for IoT-Enhanced Processes: A Case Study in Smart Manufacturing. BPM 2023: 395-412 - [c62]Manon Reusens, Philipp Borchert, Margot Mieskes, Jochen De Weerdt, Bart Baesens:
Investigating Bias in Multilingual Language Models: Cross-Lingual Transfer of Debiasing Techniques. EMNLP 2023: 2887-2896 - [c61]Philipp Borchert, Jochen De Weerdt, Kristof Coussement, Arno De Caigny, Marie-Francine Moens:
CORE: A Few-Shot Company Relation Classification Dataset for Robust Domain Adaptation. EMNLP 2023: 11792-11806 - [c60]Jan Niklas Adams, Jari Peeperkorn, Tobias Brockhoff, Isabelle Terrier, Heiko Göhner, Merih Seran Uysal, Seppe vanden Broucke, Jochen De Weerdt, Wil M. P. van der Aalst:
Discovering high-quality process models despite data scarcity. ER (Companion) 2023 - [c59]Thais Rodrigues Neubauer, Jari Peeperkorn, Sarajane Marques Peres, Jochen De Weerdt, Marcelo Fantinato:
Vector Representation for Business Process: Graph Embedding for Domain Knowledge Integration. ICMLA 2023: 588-594 - [c58]Alexander Stevens, Jari Peeperkorn, Johannes De Smedt, Jochen De Weerdt:
Manifold Learning for Adversarial Robustness in Predictive Process Monitoring. ICPM 2023: 17-24 - [c57]Margot Geerts, Seppe vanden Broucke, Jochen De Weerdt:
An Evolutionary Geospatial Regression Tree. STRL@IJCAI 2023 - [i15]Hans Weytjens, Wouter Verbeke, Jochen De Weerdt:
Timing Process Interventions with Causal Inference and Reinforcement Learning. CoRR abs/2306.04299 (2023) - [i14]Manon Reusens, Philipp Borchert, Margot Mieskes, Jochen De Weerdt, Bart Baesens:
Investigating Bias in Multilingual Language Models: Cross-Lingual Transfer of Debiasing Techniques. CoRR abs/2310.10310 (2023) - [i13]Jan Niklas Adams, Jari Peeperkorn, Tobias Brockhoff, Isabelle Terrier, Heiko Göhner, Merih Seran Uysal, Seppe vanden Broucke, Jochen De Weerdt, Wil M. P. van der Aalst:
Discovering High-Quality Process Models Despite Data Scarcity. CoRR abs/2310.11332 (2023) - [i12]Philipp Borchert, Jochen De Weerdt, Kristof Coussement, Arno De Caigny, Marie-Francine Moens:
CORE: A Few-Shot Company Relation Classification Dataset for Robust Domain Adaptation. CoRR abs/2310.12024 (2023) - 2022
- [j31]Hans Weytjens, Jochen De Weerdt:
Learning uncertainty with artificial neural networks for predictive process monitoring. Appl. Soft Comput. 125: 109134 (2022) - [j30]Rafaël Van Belle, Charles Van Damme, Hendrik Tytgat, Jochen De Weerdt:
Inductive Graph Representation Learning for fraud detection. Expert Syst. Appl. 193: 116463 (2022) - [j29]Galina Deeva, Johannes De Smedt, Cecilia Saint-Pierre, Richard Weber, Jochen De Weerdt:
Predicting student performance using sequence classification with time-based windows. Expert Syst. Appl. 209: 118182 (2022) - [j28]Galina Deeva, Johannes De Smedt, Jochen De Weerdt:
Educational Sequence Mining for Dropout Prediction in MOOCs: Model Building, Evaluation, and Benchmarking. IEEE Trans. Learn. Technol. 15(6): 720-735 (2022) - [c56]Jarne Vandenabeele, Gilles Vermaut, Jari Peeperkorn, Jochen De Weerdt:
Enhancing Stochastic Petri Net-based Remaining Time Prediction using k-Nearest Neighbors. ATAED@Petri Nets 2022: 9-24 - [c55]Simon Hiel, Lore Nicolaers, Carlos Ortega Vázquez, Sandra Mitrovic, Bart Baesens, Jochen De Weerdt:
Evaluation of Joint Modeling Techniques for Node Embedding and Community Detection on Graphs. ASONAM 2022: 403-410 - [c54]Yannis Bertrand, Jochen De Weerdt, Estefanía Serral:
Assessing the Suitability of Traditional Event Log Standards for IoT-Enhanced Event Logs. Business Process Management Workshops 2022: 63-75 - [c53]Alexander Stevens, Johannes De Smedt, Jari Peeperkorn, Jochen De Weerdt:
Assessing the Robustness in Predictive Process Monitoring through Adversarial Attacks. ICPM 2022: 56-63 - [c52]Jari Peeperkorn, Carlos Ortega Vázquez, Alexander Stevens, Johannes De Smedt, Seppe vanden Broucke, Jochen De Weerdt:
Outcome-Oriented Predictive Process Monitoring on Positive and Unlabelled Event Logs. ICPM Workshops 2022: 255-268 - [c51]Yannis Bertrand, Rafaël Van Belle, Jochen De Weerdt, Estefanía Serral:
Defining Data Quality Issues in Process Mining with IoT Data. ICPM Workshops 2022: 422-434 - [c50]Björn Rafn Gunnarsson, Jochen De Weerdt, Seppe vanden Broucke:
A framework for encoding the multi-location load state of a business process. PMAI@IJCAI 2022: 13-24 - [c49]Carlos Ortega Vázquez, Jochen De Weerdt, Seppe vanden Broucke:
The Hidden Cost of Fraud: An Instance-Dependent Cost-Sensitive Approach for Positive and Unlabeled Learning. LIDTA 2022: 53-67 - [c48]Margot Geerts, Kiran Shaikh, Jochen De Weerdt, Seppe vanden Broucke:
Predicting the State of a House Using Google Street View - An Analysis of Deep Binary Classification Models for the Assessment of the Quality of Flemish Houses. RCIS 2022: 703-710 - [p1]Jochen De Weerdt, Moe Thandar Wynn:
Foundations of Process Event Data. Process Mining Handbook 2022: 193-211 - [e3]Jochen De Weerdt, Artem Polyvyanyy:
Intelligent Information Systems - CAiSE Forum 2022, Leuven, Belgium, June 6-10, 2022, Proceedings. Lecture Notes in Business Information Processing 452, Springer 2022, ISBN 978-3-031-07480-6 [contents] - [i11]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Can deep neural networks learn process model structure? An assessment framework and analysis. CoRR abs/2202.11985 (2022) - [i10]Hans Weytjens, Jochen De Weerdt:
Learning Uncertainty with Artificial Neural Networks for Improved Predictive Process Monitoring. CoRR abs/2206.06317 (2022) - [i9]Jarne Vandenabeele, Gilles Vermaut, Jari Peeperkorn, Jochen De Weerdt:
Enhancing Stochastic Petri Net-based Remaining Time Prediction using k-Nearest Neighbors. CoRR abs/2206.13109 (2022) - [i8]Galina Deeva, Johannes De Smedt, Cecilia Saint-Pierre, Richard Weber, Jochen De Weerdt:
Predicting student performance using sequence classification with time-based windows. CoRR abs/2208.07749 (2022) - [i7]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Can recurrent neural networks learn process model structure? CoRR abs/2212.06430 (2022) - 2021
- [j27]Galina Deeva, Daria Bogdanova, Estefanía Serral, Monique Snoeck, Jochen De Weerdt:
A review of automated feedback systems for learners: Classification framework, challenges and opportunities. Comput. Educ. 162: 104094 (2021) - [j26]Andrea Burattin, Jochen De Weerdt, Boudewijn F. van Dongen, Jan Claes, Wil M. P. van der Aalst:
Special issue on business process intelligence. Computing 103(1): 1-2 (2021) - [j25]Mieke Jans, Jochen De Weerdt, Benoît Depaire, Marlon Dumas, Gert Janssenswillen:
Conformance Checking in Process Mining. Inf. Syst. 102: 101851 (2021) - [j24]Sandra Mitrovic, Bart Baesens, Wilfried Lemahieu, Jochen De Weerdt:
tcc2vec: RFM-informed representation learning on call graphs for churn prediction. Inf. Sci. 557: 270-285 (2021) - [j23]Pieter De Koninck, Klaas Nelissen, Seppe vanden Broucke, Bart Baesens, Monique Snoeck, Jochen De Weerdt:
Expert-driven trace clustering with instance-level constraints. Knowl. Inf. Syst. 63(5): 1197-1220 (2021) - [c47]Hans Weytjens, Jochen De Weerdt:
Creating Unbiased Public Benchmark Datasets with Data Leakage Prevention for Predictive Process Monitoring. Business Process Management Workshops 2021: 18-29 - [c46]Hans Weytjens, Jochen De Weerdt:
Learning Uncertainty with Artificial Neural Networks for Improved Remaining Time Prediction of Business Processes. BPM 2021: 141-157 - [c45]Monique Snoeck, Johannes De Smedt, Jochen De Weerdt:
Supporting Data-Aware Processes with MERODE. BPMDS/EMMSAD@CAiSE 2021: 131-146 - [c44]Johannes De Smedt, Anton Yeshchenko, Artem Polyvyanyy, Jochen De Weerdt, Jan Mendling:
Process Model Forecasting Using Time Series Analysis of Event Sequence Data. ER 2021: 47-61 - [c43]Joppe Geluykens, Sandra Mitrovic, Carlos Ortega Vázquez, Teodoro Laino, Alain C. Vaucher, Jochen De Weerdt:
Neural Machine Translation for Conditional Generation of Novel Procedures. HICSS 2021: 1-10 - [c42]Yannis Bertrand, Jochen De Weerdt, Estefanía Serral:
A Bridging Model for Process Mining and IoT. ICPM Workshops 2021: 98-110 - [c41]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Can Deep Neural Networks Learn Process Model Structure? An Assessment Framework and Analysis. ICPM Workshops 2021: 127-139 - [i6]Hans Weytjens, Jochen De Weerdt:
Process Outcome Prediction: CNN vs. LSTM (with Attention). CoRR abs/2104.06934 (2021) - [i5]Johannes De Smedt, Anton Yeshchenko, Artem Polyvyanyy, Jochen De Weerdt, Jan Mendling:
Process Model Forecasting Using Time Series Analysis of Event Sequence Data. CoRR abs/2105.01092 (2021) - [i4]Hans Weytjens, Jochen De Weerdt:
Learning Uncertainty with Artificial Neural Networks for Improved Remaining Time Prediction of Business Processes. CoRR abs/2105.05559 (2021) - [i3]Hans Weytjens, Jochen De Weerdt:
Creating Unbiased Public Benchmark Datasets with Data Leakage Prevention for Predictive Process Monitoring. CoRR abs/2107.01905 (2021) - [i2]Pieter De Koninck, Klaas Nelissen, Seppe vanden Broucke, Bart Baesens, Monique Snoeck, Jochen De Weerdt:
Expert-driven Trace Clustering with Instance-level Constraints. CoRR abs/2110.06703 (2021) - 2020
- [j22]Niels Martin, Jochen De Weerdt, Carlos Fernández-Llatas, Avigdor Gal, Roberto Gatta, Gema Ibáñez, Owen A. Johnson, Felix Mannhardt, Luis Marco-Ruiz, Steven Mertens, Jorge Munoz-Gama, Fernando Seoane, Jan Vanthienen, Moe Thandar Wynn, David Baltar Boilève, Jochen Bergs, Mieke Joosten-Melis, Stijn Schretlen, Bram B. Van Acker:
Recommendations for enhancing the usability and understandability of process mining in healthcare. Artif. Intell. Medicine 109: 101962 (2020) - [j21]Sandra Mitrovic, Jochen De Weerdt:
Churn modeling with probabilistic meta paths-based representation learning. Inf. Process. Manag. 57(2): 102052 (2020) - [j20]Johannes De Smedt, Galina Deeva, Jochen De Weerdt:
Mining Behavioral Sequence Constraints for Classification. IEEE Trans. Knowl. Data Eng. 32(6): 1130-1142 (2020) - [c40]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Conformance Checking Using Activity and Trace Embeddings. BPM (Forum) 2020: 105-121 - [c39]Hans Weytjens, Jochen De Weerdt:
Process Outcome Prediction: CNN vs. LSTM (with Attention). Business Process Management Workshops 2020: 321-333 - [c38]Jari Peeperkorn, Seppe vanden Broucke, Jochen De Weerdt:
Supervised Conformance Checking Using Recurrent Neural Network Classifiers. ICPM Workshops 2020: 175-187 - [c37]Steven Van Goidsenhoven, Daria Bogdanova, Galina Deeva, Seppe vanden Broucke, Jochen De Weerdt, Monique Snoeck:
Predicting student success in a blended learning environment. LAK 2020: 17-25 - [c36]Carlos Ortega Vázquez, Sandra Mitrovic, Jochen De Weerdt, Seppe vanden Broucke:
A Comparative Study of Representation Learning Techniques for Dynamic Networks. WorldCIST (3) 2020: 523-530 - [e2]Claudio Di Ciccio, Benoît Depaire, Jochen De Weerdt, Chiara Di Francescomarino, Jorge Munoz-Gama:
Proceedings of the ICPM Doctoral Consortium and Tool Demonstration Track 2020 co-located with the 2nd International Conference on Process Mining (ICPM 2020), Padua, Italy, October 4-9, 2020. CEUR Workshop Proceedings 2703, CEUR-WS.org 2020 [contents] - [i1]Johannes De Smedt, Jochen De Weerdt, Junichiro Mori, Masanao Ochi:
Predictive Process Model Monitoring using Recurrent Neural Networks. CoRR abs/2011.02819 (2020)
2010 – 2019
- 2019
- [c35]Sandra Mitrovic, Laurent Lecoutere, Jochen De Weerdt:
A comparison of methods for link sign prediction with signed network embeddings. ASONAM 2019: 1089-1096 - [c34]Björn Rafn Gunnarsson, Seppe K. L. M. vanden Broucke, Jochen De Weerdt:
Predictive Process Monitoring in Operational Logistics: A Case Study in Aviation. Business Process Management Workshops 2019: 250-262 - [c33]Galina Deeva, Johannes De Smedt, Jochen De Weerdt, María Óskarsdóttir:
Mining Behavioural Patterns in Urban Mobility Sequences Using Foursquare Check-in Data from Tokyo. COMPLEX NETWORKS (2) 2019: 931-943 - [c32]Björn Rafn Gunnarsson, Seppe vanden Broucke, Jochen De Weerdt:
Optimizing Marketing Campaign Targeting Using Uncertainty-Based Predictive Modelling. ICDM Workshops 2019: 326-332 - [c31]Pieter De Koninck, Jochen De Weerdt:
Scalable Mixed-Paradigm Trace Clustering using Super-Instances. ICPM 2019: 17-24 - [c30]Rafaël Van Belle, Sandra Mitrovic, Jochen De Weerdt:
Representation Learning in Graphs for Credit Card Fraud Detection. MIDAS@PKDD 2019: 32-46 - [c29]Lauranne Coppens, Jonathan De Venter, Sandra Mitrovic, Jochen De Weerdt:
A Comparative Study of Community Detection Techniques for Large Evolving Graphs. PKDD/ECML Workshops (1) 2019: 368-384 - [r1]Jochen De Weerdt:
Trace Clustering. Encyclopedia of Big Data Technologies 2019 - 2018
- [j19]Sandra Mitrovic, Bart Baesens, Wilfried Lemahieu, Jochen De Weerdt:
On the operational efficiency of different feature types for telco Churn prediction. Eur. J. Oper. Res. 267(3): 1141-1155 (2018) - [j18]Johannes De Smedt, Jochen De Weerdt, Estefanía Serral, Jan Vanthienen:
Discovering hidden dependencies in constraint-based declarative process models for improving understandability. Inf. Syst. 74(Part): 40-52 (2018) - [c28]Sam De Winter, Tim Decuypere, Sandra Mitrovic, Bart Baesens, Jochen De Weerdt:
Combining Temporal Aspects of Dynamic Networks with Node2Vec for a more Efficient Dynamic Link Prediction. ASONAM 2018: 1234-1241 - [c27]Galina Deeva, Jochen De Weerdt:
Understanding Automated Feedback in Learning Processes by Mining Local Patterns. Business Process Management Workshops 2018: 56-68 - [c26]Pieter De Koninck, Seppe vanden Broucke, Jochen De Weerdt:
act2vec, trace2vec, log2vec, and model2vec: Representation Learning for Business Processes. BPM 2018: 305-321 - [c25]Galina Deeva, Monique Snoeck, Jochen De Weerdt:
Discovering the Impact of Students' Modeling Behavior on their Final Performance. PoEM 2018: 335-350 - 2017
- [j17]Pieter De Koninck, Jochen De Weerdt, Seppe K. L. M. vanden Broucke:
Explaining clusterings of process instances. Data Min. Knowl. Discov. 31(3): 774-808 (2017) - [j16]Seppe K. L. M. vanden Broucke, Jochen De Weerdt:
Fodina: A robust and flexible heuristic process discovery technique. Decis. Support Syst. 100: 109-118 (2017) - [j15]Wei Zhe Low, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Moe Thandar Wynn, Jochen De Weerdt:
Change visualisation: Analysing the resource and timing differences between two event logs. Inf. Syst. 65: 106-123 (2017) - [j14]Pieter De Koninck, Jochen De Weerdt:
Similarity-Based Approaches for Determining the Number of Trace Clusters in Process Discovery. Trans. Petri Nets Other Model. Concurr. 12: 19-42 (2017) - [c24]Galina Deeva, Johannes De Smedt, Pieter De Koninck, Jochen De Weerdt:
Dropout Prediction in MOOCs: A Comparison Between Process and Sequence Mining. Business Process Management Workshops 2017: 243-255 - [c23]Pieter De Koninck, Klaas Nelissen, Bart Baesens, Seppe vanden Broucke, Monique Snoeck, Jochen De Weerdt:
An Approach for Incorporating Expert Knowledge in Trace Clustering. CAiSE 2017: 561-576 - [c22]Sandra Mitrovic, Gaurav Singh, Bart Baesens, Wilfried Lemahieu, Jochen De Weerdt:
Scalable RFM-enriched Representation Learning for Churn Prediction. DSAA 2017: 79-88 - [c21]Johannes De Smedt, Galina Deeva, Jochen De Weerdt:
Behavioral Constraint Template-Based Sequence Classification. ECML/PKDD (2) 2017: 20-36 - [c20]Sandra Mitrovic, Bart Baesens, Wilfried Lemahieu, Jochen De Weerdt:
Churn Prediction Using Dynamic RFM-Augmented Node2vec. PAP@PKDD/ECML 2017: 122-138 - 2016
- [j13]Johannes De Smedt, Jochen De Weerdt, Jan Vanthienen, Geert Poels:
Mixed-Paradigm Process Modeling with Intertwined State Spaces. Bus. Inf. Syst. Eng. 58(1): 19-29 (2016) - [j12]Johannes De Smedt, Jochen De Weerdt, Jan Vanthienen, Geert Poels:
Erratum to: Mixed-Paradigm Process Modeling with Intertwined State Spaces. Bus. Inf. Syst. Eng. 58(1): 101-104 (2016) - [j11]Gayane Sedrakyan, Jochen De Weerdt, Monique Snoeck:
Process-mining enabled feedback: "Tell me what I did wrong" vs. "tell me how to do it right". Comput. Hum. Behav. 57: 352-376 (2016) - [j10]Wei Zhe Low, Seppe K. L. M. vanden Broucke, Moe Thandar Wynn, Arthur H. M. ter Hofstede, Jochen De Weerdt, Wil M. P. van der Aalst:
Revising history for cost-informed process improvement. Computing 98(9): 895-921 (2016) - [c19]Pieter De Koninck, Jochen De Weerdt:
Determining the Number of Trace Clusters: a Stability-based Approach. ATAED@Petri Nets/ACSD 2016: 1-15 - [c18]Pieter De Koninck, Jochen De Weerdt:
Multi-objective Trace Clustering: Finding More Balanced Solutions. Business Process Management Workshops 2016: 49-60 - [c17]Pieter De Koninck, Jochen De Weerdt:
A Stability Assessment Framework for Process Discovery Techniques. BPM 2016: 57-72 - [c16]Johannes De Smedt, Jochen De Weerdt, Estefanía Serral, Jan Vanthienen:
Improving Understandability of Declarative Process Models by Revealing Hidden Dependencies. CAiSE 2016: 83-98 - [c15]Estefanía Serral, Jochen De Weerdt, Gayane Sedrakyan, Monique Snoeck:
Automating immediate and personalized feedback taking conceptual modelling education to a next level. RCIS 2016: 1-6 - 2015
- [j9]Johannes De Smedt, Jochen De Weerdt, Jan Vanthienen:
Fusion Miner: Process discovery for mixed-paradigm models. Decis. Support Syst. 77: 123-136 (2015) - [c14]Johannes De Smedt, Jochen De Weerdt, Estefanía Serral, Jan Vanthienen:
Gamification of Declarative Process Models for Learning and Model Verification. Business Process Management Workshops 2015: 432-443 - 2014
- [j8]Filip Caron, Jan Vanthienen, Kris Vanhaecht, Erik van Limbergen, Jochen De Weerdt, Bart Baesens:
Monitoring care processes in the gynecologic oncology department. Comput. Biol. Medicine 44: 88-96 (2014) - [j7]Gayane Sedrakyan, Monique Snoeck, Jochen De Weerdt:
Process mining analysis of conceptual modeling behavior of novices - empirical study using JMermaid modeling and experimental logging environment. Comput. Hum. Behav. 41: 486-503 (2014) - [j6]Luciano García-Bañuelos, Marlon Dumas, Marcello La Rosa, Jochen De Weerdt, Chathura C. Ekanayake:
Controlled automated discovery of collections of business process models. Inf. Syst. 46: 85-101 (2014) - [j5]Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, Bart Baesens:
Determining Process Model Precision and Generalization with Weighted Artificial Negative Events. IEEE Trans. Knowl. Data Eng. 26(8): 1877-1889 (2014) - [c13]Jochen De Weerdt, Seppe K. L. M. vanden Broucke:
SECPI: Searching for Explanations for Clustered Process Instances. BPM 2014: 408-415 - [c12]Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Filip Caron:
Bidimensional Process Discovery for Mining BPMN Models. Business Process Management Workshops 2014: 529-540 - [c11]Wei Zhe Low, Jochen De Weerdt, Moe Thandar Wynn, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Seppe K. L. M. vanden Broucke:
Perturbing event logs to identify cost reduction opportunities: A genetic algorithm-based approach. IEEE Congress on Evolutionary Computation 2014: 2428-2435 - [c10]Johannes De Smedt, Jochen De Weerdt, Jan Vanthienen:
Multi-paradigm Process Mining: Retrieving Better Models by Combining Rules and Sequences - (Short Paper). OTM Conferences 2014: 446-453 - 2013
- [j4]Jochen De Weerdt, Annelies Schupp, An Vanderloock, Bart Baesens:
Process Mining for the multi-faceted analysis of business processes - A case study in a financial services organization. Comput. Ind. 64(1): 57-67 (2013) - [j3]Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Jan Vanthienen, Bart Baesens:
Active Trace Clustering for Improved Process Discovery. IEEE Trans. Knowl. Data Eng. 25(12): 2708-2720 (2013) - [c9]Moe Wynn, Jochen De Weerdt, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Hajo A. Reijers, Michael Adams, Chun Ouyang, Michael Rosemann, Wei Zhe Low:
Cost-Aware Business Process Management: A Research Agenda. ACIS 2013: 110 - [c8]Boudewijn F. van Dongen, Barbara Weber, Diogo R. Ferreira, Jochen De Weerdt:
Report: Business Process Intelligence Challenge 2013. Business Process Management Workshops 2013: 79-87 - [c7]Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, Bart Baesens:
A comprehensive benchmarking framework (CoBeFra) for conformance analysis between procedural process models and event logs in ProM. CIDM 2013: 254-261 - [e1]Boudewijn F. van Dongen, Barbara Weber, Diogo R. Ferreira, Jochen De Weerdt:
Proceedings of the 3rd Business Process Intelligence Challenge co-located with 9th International Business Process Intelligence Workshop (BPI 2013), Beijing, China, August 26, 2013. CEUR Workshop Proceedings 1052, CEUR-WS.org 2013 [contents] - 2012
- [b1]Jochen De Weerdt:
Business process discovery: new techniques and applications. Katholieke Universiteit Leuven, Belgium, 2012 - [j2]Jochen De Weerdt, Manu De Backer, Jan Vanthienen, Bart Baesens:
A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7): 654-676 (2012) - [c6]Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Bart Baesens, Jan Vanthienen:
Improved Artificial Negative Event Generation to Enhance Process Event Logs. CAiSE 2012: 254-269 - [c5]Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Jan Vanthienen, Bart Baesens:
Leveraging process discovery with trace clustering and text mining for intelligent analysis of incident management processes. IEEE Congress on Evolutionary Computation 2012: 1-8 - [c4]Jochen De Weerdt, Filip Caron, Jan Vanthienen, Bart Baesens:
Getting a Grasp on Clinical Pathway Data: An Approach Based on Process Mining. PAKDD Workshops 2012: 22-35 - 2011
- [j1]Stijn Goedertier, Jochen De Weerdt, David Martens, Jan Vanthienen, Bart Baesens:
Process discovery in event logs: An application in the telecom industry. Appl. Soft Comput. 11(2): 1697-1710 (2011) - [c3]Filip Caron, Jan Vanthienen, Jochen De Weerdt, Bart Baesens:
Advanced Care-Flow Mining and Analysis. Business Process Management Workshops (1) 2011: 167-168 - [c2]Jochen De Weerdt, Manu De Backer, Jan Vanthienen, Bart Baesens:
A robust F-measure for evaluating discovered process models. CIDM 2011: 148-155 - 2010
- [c1]Jochen De Weerdt, Manu De Backer, Jan Vanthienen, Bart Baesens:
A Critical Evaluation Study of Model-Log Metrics in Process Discovery. Business Process Management Workshops 2010: 158-169
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-02 21:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint