default search action
Glenn H. Chapman
Person information
- affiliation: Simon Fraser University, Canada
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c61]Glenn H. Chapman, Alireza Farahmandpour, Amit Chakma, Israel Koren, Zahava Koren:
Image Degradation due to Interacting Hot Pixels and SEUs. DFT 2024: 1-6 - 2023
- [c60]Glenn H. Chapman, Klinsmann J. Coelho Silva Meneses, Linda Wu, Israel Koren, Zahava Koren:
Image Degradation in Time Due to Interacting Hot Pixels. DFT 2023: 1-6 - 2022
- [c59]Glenn H. Chapman, Klinsmann J. Coelho Silva Meneses, Israel Koren, Zahava Koren:
Image Degradation due to Interacting Adjacent Hot Pixels. DFT 2022: 1-6 - 2021
- [c58]Glenn H. Chapman, Simone Neufeld, Klinsmann J. Coelho Silva Meneses, Israel Koren, Zahava Koren:
Dependence of SEUs in Digital Cameras on Pixel size and Elevation. DFT 2021: 1-4 - [c57]Vijay K. Jain, Glenn H. Chapman:
Fault Tolerance for Islandable-Microgrid Sensors. DFT 2021: 1-4 - 2020
- [c56]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Ruoyi Zhao, Israel Koren, Zahava Koren:
Using digital imagers to characterize the dependence of energy and area distributions of SEUs on elevation. DFT 2020: 1-4
2010 – 2019
- 2019
- [c55]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Bifei Huang, Hao Yang, Israel Koren, Zahava Koren:
Detecting SEUs in Noisy Digital Imagers with small pixels. DFT 2019: 1-6 - [c54]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Israel Koren, Zahava Koren:
Image degradation from hot pixel defects with pixel size shrinkage. IMSE 2019: 1-7 - 2018
- [c53]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Israel Koren, Zahava Koren:
Analysis of Single Event Upsets Based on Digital Cameras with Very Small Pixels. DFT 2018: 1-6 - [c52]Glenn H. Chapman, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Parham Purbakht, Israel Koren, Zahava Koren:
Exploring Hot Pixel Characteristics for 7 to 1.3 micron Pixels. IMSE 2018: 1-6 - 2017
- [c51]Glenn H. Chapman, Parham Purbakht, Peter Le, Israel Koren, Zahava Koren:
Exploring soft errors (SEUs) with digital imager pixels ranging from 7 to 1.3 μm. DFT 2017: 1-4 - [c50]Glenn H. Chapman, Rahul Thomas, Israel Koren, Zahava Koren:
Hot Pixel Behavior as Pixel Size Reduces to 1 micron. IMSE 2017: 39-45 - [c49]David Stevens, Bonnie L. Gray, David Yin, Glenn H. Chapman, Daniel B. Leznoff:
Post arrays for the immobilization of vapochromic coordination polymers for chemical sensors. IEEE SENSORS 2017: 1-3 - 2016
- [c48]Glenn H. Chapman, Rahul Thomas, Rohan Thomas, Israel Koren, Zahava Koren:
Experimental study and analysis of soft and permanent errors in digital cameras. DFT 2016: 11-14 - [c47]Glenn H. Chapman, Rahul Thomas, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Tommy Q. Yang, Israel Koren, Zahava Koren:
Increases in Hot Pixel Development Rates for Small Digital Pixel Sizes. IMSE 2016: 1-6 - 2015
- [c46]Glenn H. Chapman, Rahul Thomas, Rohan Thomas, Klinsmann J. Coelho Silva Meneses, Tommy Q. Yang, Israel Koren, Zahava Koren:
Single Event Upsets and Hot Pixels in digital imagers. DFTS 2015: 41-46 - [c45]Glenn H. Chapman, Rahul Thomas, Rohit Thomas, Zahava Koren, Israel Koren:
Enhanced correction methods for high density hot pixel defects in digital imagers. IMSE 2015: 94030T - 2014
- [c44]Glenn H. Chapman, Rohit Thomas, Rahul Thomas, Israel Koren, Zahava Koren:
Improved correction for hot pixels in digital imagers. DFT 2014: 116-121 - [c43]Glenn H. Chapman, Rohit Thomas, Zahava Koren, Israel Koren:
Correcting high-density hot pixel defects in digital imagers. IMSE 2014: 90220G - 2013
- [c42]Glenn H. Chapman, Rohit Thomas, Israel Koren, Zahava Koren:
Improved image accuracy in Hot Pixel degraded digital cameras. DFTS 2013: 172-177 - [c41]Glenn H. Chapman, Rohit Thomas, Zahava Koren, Israel Koren:
Empirical formula for rates of hot pixel defects based on pixel size, sensor area, and ISO. Sensors, Cameras, and Systems for Industrial and Scientific Applications 2013: 86590C - 2012
- [c40]Glenn H. Chapman, Rohit Thomas, Israel Koren, Zahava Koren:
Relating digital imager defect rates to pixel size, sensor area and ISO. DFT 2012: 164-169 - [c39]Glenn H. Chapman, Jenny Leung, Rohit Thomas, Ana I. L. Namburete, Zahava Koren, Israel Koren:
Projecting the rate of in-field pixel defects based on pixel size, sensor area, and ISO. Sensors, Cameras, and Systems for Industrial and Scientific Applications 2012: 82980E - [c38]Glenn H. Chapman, Israel Koren, Zahava Koren:
Do more camera pixels result in a better picture? IOLTS 2012: 73-78 - 2011
- [c37]Glenn H. Chapman, Bonnie L. Gray, Vijay K. Jain:
Creating Defect Tolerance in Microfluidic Capacitive/Photonic Biosensors. DFT 2011: 181-189 - [c36]Vijay K. Jain, Glenn H. Chapman:
Enhanced Defect Tolerance through Matrixed Deployment of Intelligent Sensors for the Smart Power Grid. DFT 2011: 235-242 - [c35]Glenn H. Chapman, Jenny Leung, Ana I. L. Namburete, Israel Koren, Zahava Koren:
Predicting Pixel Defect Rates Based on Image Sensor Parameters. DFT 2011: 408-416 - [c34]Glenn H. Chapman, Jenny Leung, Rahul Thomas, Zahava Koren, Israel Koren:
Tradeoffs in imager design parameters for sensor reliability. Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications 2011: 78750I - [c33]Phanindra Kalyanam, Glenn H. Chapman, M. Parameswaran:
Simulating enhanced photo carrier collection in the multifinger photogate active pixel sensors. Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications 2011: 787508 - 2010
- [c32]Glenn H. Chapman, Jenny Leung, Israel Koren, Zahava Koren:
Tradeoffs in Imager Design with Respect to Pixel Defect Rates. DFT 2010: 231-239 - [c31]Vijay K. Jain, Glenn H. Chapman:
Massively Deployable Intelligent Sensors for the Smart Power Grid. DFT 2010: 319-327
2000 – 2009
- 2009
- [c30]Jenny Leung, Glenn H. Chapman, Israel Koren, Zahava Koren:
Characterization of Gain Enhanced In-Field Defects in Digital Imagers. DFT 2009: 155-163 - [c29]Jenny Leung, Glenn H. Chapman, Zahava Koren, Israel Koren:
Statistical identification and analysis of defect development in digital imagers. Digital Photography 2009: 72500 - 2008
- [c28]Glenn H. Chapman, Vijay K. Jain:
Defect Tolerance for a Capacitance Based Nanoscale Biosensor. DFT 2008: 220-228 - [c27]Jenny Leung, Glenn H. Chapman, Israel Koren, Zahava Koren:
Automatic Detection of In-field eld Defect Growth in Image Sensors. DFT 2008: 305-313 - 2007
- [c26]Jozsef Dudas, Michelle L. La Haye, Jenny Leung, Glenn H. Chapman:
A Fault-Tolerant Active Pixel Sensor to Correct In-Field Hot Pixel Defects. DFT 2007: 517-525 - [c25]Jenny Leung, Jozsef Dudas, Glenn H. Chapman, Israel Koren, Zahava Koren:
Quantitative Analysis of In-Field Defects in Image Sensor Arrays. DFT 2007: 526-534 - [c24]Jozsef Dudas, Linda Wu, Cory Jung, Glenn H. Chapman, Zahava Koren, Israel Koren:
Identification of in-field defect development in digital image sensors. Digital Photography 2007: 65020Y - [c23]James Dykes, Paulman Chan, Glenn H. Chapman, Lesley Shannon:
A Multiprocessor System-on-Chip Implementation of a Laser-based Transparency Meter on an FPGA. FPT 2007: 373-376 - 2006
- [c22]Vijay K. Jain, Glenn H. Chapman:
Defect Tolerant and Energy Economized DSP Plane of a 3-D Heterogeneous SoC. DFT 2006: 157-165 - [c21]Jozsef Dudas, Cory Jung, Linda Wu, Glenn H. Chapman, Israel Koren, Zahava Koren:
On-Line Mapping of In-Field Defects in Image Sensor Arrays. DFT 2006: 439-447 - [c20]Michelle L. La Haye, Cory Jung, David Chen, Glenn H. Chapman, Jozsef Dudas:
Fault Tolerant Active Pixel Sensors in 0.18 and 0.35 Micron Technologies. DFT 2006: 448-456 - [c19]Fartash Vasefi, Paulman K. Y. Chan, Bozena Kaminska, Glenn H. Chapman:
Subsurface Bioimaging using Angular Domain Optical Backscattering Illumination. EMBC 2006: 1932-1936 - 2005
- [c18]Glenn H. Chapman, Israel Koren, Zahava Koren, Jozsef Dudas, Cory Jung:
On-Line Identification of Faults in Fault-Tolerant Imagers. DFT 2005: 149-157 - [c17]Glenn H. Chapman, Vijay K. Jain, Shekhar Bhansali:
Inter-Plane Via Defect Detection Using the Sensor Plane in 3-D Heterogeneous Sensor Systems. DFT 2005: 158-168 - [c16]Vijay K. Jain, Sanjukta Bhanja, Glenn H. Chapman, Lavanya Doddannagari, Nguyen Nguyen:
A parallel architecture for the ICA algorithm: DSP plane of a 3-D heterogeneous sensor. ICASSP (5) 2005: 77-80 - [c15]Vijay K. Jain, Sanjukta Bhanja, Glenn H. Chapman, Lavanya Doddannagari:
A highly reconfigurable computing array: DSP plane of a 3D heterogeneous SoC. SoCC 2005: 243-246 - 2004
- [j7]Glenn H. Chapman, Sunjaya Djaja, Desmond Y. H. Cheung, Yves Audet, Israel Koren, Zahava Koren:
A Self-Correcting Active Pixel Sensor Using Hardware and Software Correction. IEEE Des. Test Comput. 21(6): 544-551 (2004) - [c14]Michelle L. La Haye, Glenn H. Chapman, Cory Jung, Desmond Y. H. Cheung, Sunjaya Djaja, Benjamin Wang, Gary Liaw, Yves Audet:
Characteristics of Fault-Tolerant Photodiode and Photogate Active Pixel Sensor (APS). DFT 2004: 58-66 - [c13]Glenn H. Chapman, Vijay K. Jain, Shekhar Bhansali:
Defect Avoidance in a 3-D Heterogeneous Sensor. DFT 2004: 67-75 - 2003
- [j6]Régis Leveugle, Glenn H. Chapman:
Special section on defect and fault tolerance in VLSI systems. Microelectron. J. 34(1): 1 (2003) - [c12]Vijay K. Jain, Glenn H. Chapman:
Level-Hybrid Optoelectronic TESH Interconnection Network. DFT 2003: 45-52 - [c11]Sunjaya Djaja, Glenn H. Chapman, Desmond Y. H. Cheung, Yves Audet:
Implementation and Testing of Fault-Tolerant Photodiode-Based Active Pixel Sensor (APS). DFT 2003: 53- - 2001
- [c10]Israel Koren, Zahava Koren, Glenn H. Chapman:
Advanced Fault-Tolerance Techniques for a Color Digital Camera-on-a-Chip. DFT 2001: 3-10 - [c9]Yves Audet, Glenn H. Chapman:
Design of a Self-Correcting Active Pixel Sensor. DFT 2001: 18- - 2000
- [c8]Israel Koren, Zahava Koren, Glenn H. Chapman:
A Self-Correcting Active Pixel Camera. DFT 2000: 56-
1990 – 1999
- 1999
- [c7]Glenn H. Chapman, Yves Audet:
Creating 35 mm Camera Active Pixel Sensors. DFT 1999: 22-30 - 1998
- [j5]Glenn H. Chapman, Benoit Dufort:
Using Laser Defect Avoidance to Build Large-Area FPGAs. IEEE Des. Test Comput. 15(4): 75-81 (1998) - [c6]Glenn H. Chapman:
FPGA Design for Decimeter Scale Integration (DMSI). DFT 1998: 64-72 - 1997
- [j4]Stuart K. Tewksbury, Glenn H. Chapman:
Guest Editorial Foreword to the Special Section on WSI'95. IEEE Trans. Very Large Scale Integr. Syst. 5(1): 1-2 (1997) - [j3]Yves Audet, Glenn H. Chapman:
Yield improvement of a large area magnetic field sensor array using redundancy schemes. IEEE Trans. Very Large Scale Integr. Syst. 5(1): 28-33 (1997) - [c5]Glenn H. Chapman, Benoit Dufort:
Laser defect correction applications to FPGA based custom computers. FCCM 1997: 240-241 - [c4]Glenn H. Chapman, Benoit Dufort:
Laser Correcting Defects to Create Transparent Routing for Large Area FPGA's. FPGA 1997: 17-23 - 1996
- [c3]Glenn H. Chapman, Benoit Dufort:
Making defect avoidance nearly invisible to the user in wafer scale field programmable gate arrays. DFT 1996: 11-20 - 1995
- [c2]Glenn H. Chapman, D. E. Bergen, K. Fang:
Wafer-scale integration defect avoidance tradeoffs between laser links and Omega network switching. DFT 1995: 37-45 - 1994
- [c1]Glenn H. Chapman:
Laser Processes for Defect Correction in Large Area VLSI Systems. DFT 1994: 106-114 - 1992
- [j2]Glenn H. Chapman, M. Parameswaran, Marek Syrzycki:
Wafer-Scale Transducer Arrays. Computer 25(4): 50-56 (1992)
1980 – 1989
- 1988
- [j1]F. Matthew Rhodes, Joseph J. Dituri, Glenn H. Chapman, Bruce E. Emerson, Antonio M. Soares, Jack I. Raffel:
A Monolithic Hough Transform Processor Based on Restructurable VLSI. IEEE Trans. Pattern Anal. Mach. Intell. 10(1): 106-110 (1988)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-03 20:27 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint