default search action
Ullrich Köthe
Person information
- affiliation: Heidelberg University, HCI/IWR, Germany
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c81]Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, Ullrich Köthe:
Free-form Flows: Make Any Architecture a Normalizing Flow. AISTATS 2024: 2197-2205 - [c80]Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, Lea Zimmermann, Ullrich Köthe:
Lifting Architectural Constraints of Injective Flows. ICLR 2024 - [c79]Felix Draxler, Stefan Wahl, Christoph Schnörr, Ullrich Köthe:
On the Universality of Volume-Preserving and Coupling-Based Normalizing Flows. ICML 2024 - [c78]Marvin Schmitt, Desi R. Ivanova, Daniel Habermann, Ullrich Köthe, Paul-Christian Bürkner, Stefan T. Radev:
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference. ICML 2024 - [e2]Ullrich Köthe, Carsten Rother:
Pattern Recognition - 45th DAGM German Conference, DAGM GCPR 2023, Heidelberg, Germany, September 19-22, 2023, Proceedings. Lecture Notes in Computer Science 14264, Springer 2024, ISBN 978-3-031-54604-4 [contents] - [i51]Felix Draxler, Stefan Wahl, Christoph Schnörr, Ullrich Köthe:
On the Universality of Coupling-based Normalizing Flows. CoRR abs/2402.06578 (2024) - [i50]Michael Götz, Christian Weber, Franciszek Binczyk, Joanna Polanska, Rafal Tarnawski, Barbara Bobek-Billewicz, Ullrich Köthe, Jens Kleesiek, Bram Stieltjes, Klaus H. Maier-Hein:
DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated MR Images. CoRR abs/2403.07434 (2024) - [i49]Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev:
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks: An Extended Investigation. CoRR abs/2406.03154 (2024) - [i48]Peter Lorenz, Mario Fernandez, Jens Müller, Ullrich Köthe:
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors. CoRR abs/2406.15104 (2024) - [i47]Peter Sorrenson, Daniel Behrend-Uriarte, Christoph Schnörr, Ullrich Köthe:
Learning Distances from Data with Normalizing Flows and Score Matching. CoRR abs/2407.09297 (2024) - [i46]Daniel Galperin, Ullrich Köthe:
Analyzing Generative Models by Manifold Entropic Metrics. CoRR abs/2410.19426 (2024) - [i45]Stefan Wahl, Armand Rousselot, Felix Draxler, Ullrich Köthe:
TRADE: Transfer of Distributions between External Conditions with Normalizing Flows. CoRR abs/2410.19492 (2024) - 2023
- [j18]Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik Schälte, Ullrich Köthe, Paul-Christian Bürkner:
BayesFlow: Amortized Bayesian Workflows With Neural Networks. J. Open Source Softw. 8(90): 5702 (2023) - [j17]Jens Müller, Stefan T. Radev, Robert Schmier, Felix Draxler, Carsten Rother, Ullrich Köthe:
Finding Competence Regions in Domain Generalization. Trans. Mach. Learn. Res. 2023 (2023) - [j16]Robert Schmier, Ullrich Köthe, Christoph-Nikolas Straehle:
Positive Difference Distribution for Image Outlier Detection using Normalizing Flows and Contrastive Data. Trans. Mach. Learn. Res. 2023 (2023) - [j15]Stefan T. Radev, Marco D'Alessandro, Ulf K. Mertens, Andreas Voss, Ullrich Köthe, Paul-Christian Bürkner:
Amortized Bayesian Model Comparison With Evidential Deep Learning. IEEE Trans. Neural Networks Learn. Syst. 34(8): 4903-4917 (2023) - [c77]Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev:
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks. DAGM 2023: 541-557 - [c76]Felix Draxler, Lars Kühmichel, Armand Rousselot, Jens Müller, Christoph Schnörr, Ullrich Köthe:
On the Convergence Rate of Gaussianization with Random Rotations. ICML 2023: 8449-8468 - [c75]Kris K. Dreher, Leonardo Ayala, Melanie Schellenberg, Marco Hübner, Jan-Hinrich Nölke, Tim J. Adler, Silvia Seidlitz, Jan Sellner, Alexander Studier-Fischer, Janek Gröhl, Felix Nickel, Ullrich Köthe, Alexander Seitel, Lena Maier-Hein:
Unsupervised Domain Transfer with Conditional Invertible Neural Networks. MICCAI (1) 2023: 770-780 - [c74]Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini, Ullrich Köthe, Paul-Christian Bürkner:
Jana: Jointly amortized neural approximation of complex Bayesian models. UAI 2023: 1695-1706 - [i44]Jonathan Wider, Jakob Kruse, Nils Weitzel, Janica C. Bühler, Ullrich Köthe, Kira Rehfeld:
Towards Learned Emulation of Interannual Water Isotopologue Variations in General Circulation Models. CoRR abs/2301.13462 (2023) - [i43]Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini, Ullrich Köthe, Paul-Christian Bürkner:
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models. CoRR abs/2302.09125 (2023) - [i42]Jens Müller, Stefan T. Radev, Robert Schmier, Felix Draxler, Carsten Rother, Ullrich Köthe:
Finding Competence Regions in Domain Generalization. CoRR abs/2303.09989 (2023) - [i41]Kris K. Dreher, Leonardo Ayala, Melanie Schellenberg, Marco Hübner, Jan-Hinrich Nölke, Tim J. Adler, Silvia Seidlitz, Jan Sellner, Alexander Studier-Fischer, Janek Gröhl, Felix Nickel, Ullrich Köthe, Alexander Seitel, Lena Maier-Hein:
Unsupervised Domain Transfer with Conditional Invertible Neural Networks. CoRR abs/2303.10191 (2023) - [i40]The-Gia Leo Nguyen, Lynton Ardizzone, Ullrich Köthe:
Training Invertible Neural Networks as Autoencoders. CoRR abs/2303.11239 (2023) - [i39]Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, Lea Zimmermann, Ullrich Köthe:
Maximum Likelihood Training of Autoencoders. CoRR abs/2306.01843 (2023) - [i38]Felix Draxler, Lars Kühmichel, Armand Rousselot, Jens Müller, Christoph Schnörr, Ullrich Köthe:
On the Convergence Rate of Gaussianization with Random Rotations. CoRR abs/2306.13520 (2023) - [i37]Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik Schälte, Ullrich Köthe, Paul-Christian Bürkner:
BayesFlow: Amortized Bayesian Workflows With Neural Networks. CoRR abs/2306.16015 (2023) - [i36]Ullrich Köthe:
A Review of Change of Variable Formulas for Generative Modeling. CoRR abs/2308.02652 (2023) - [i35]Tim J. Adler, Jan-Hinrich Nölke, Annika Reinke, Minu Dietlinde Tizabi, Sebastian Gruber, Dasha Trofimova, Lynton Ardizzone, Paul F. Jaeger, Florian Büttner, Ullrich Köthe, Lena Maier-Hein:
Application-driven Validation of Posteriors in Inverse Problems. CoRR abs/2309.09764 (2023) - [i34]Marvin Schmitt, Daniel Habermann, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev:
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference. CoRR abs/2310.04395 (2023) - [i33]Lasse Elsemüller, Hans Olischläger, Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev:
Sensitivity-Aware Amortized Bayesian Inference. CoRR abs/2310.11122 (2023) - [i32]Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, Ullrich Köthe:
Free-form Flows: Make Any Architecture a Normalizing Flow. CoRR abs/2310.16624 (2023) - [i31]Marvin Schmitt, Valentin Pratz, Ullrich Köthe, Paul-Christian Bürkner, Stefan T. Radev:
Consistency Models for Scalable and Fast Simulation-Based Inference. CoRR abs/2312.05440 (2023) - [i30]Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, Ullrich Köthe:
Learning Distributions on Manifolds with Free-form Flows. CoRR abs/2312.09852 (2023) - [i29]Jens Müller, Lars Kühmichel, Martin Rohbeck, Stefan T. Radev, Ullrich Köthe:
Towards Context-Aware Domain Generalization: Representing Environments with Permutation-Invariant Networks. CoRR abs/2312.10107 (2023) - 2022
- [j14]Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, Ullrich Köthe:
BayesFlow: Learning Complex Stochastic Models With Invertible Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 33(4): 1452-1466 (2022) - [c73]Titus Leistner, Radek Mackowiak, Lynton Ardizzone, Ullrich Köthe, Carsten Rother:
Towards Multimodal Depth Estimation from Light Fields. CVPR 2022: 12943-12951 - [c72]Malte Tölle, Ullrich Köthe, Florian André, Benjamin Meder, Sandy Engelhardt:
Content-Aware Differential Privacy with Conditional Invertible Neural Networks. DeCaF/FAIR@MICCAI 2022: 89-99 - [c71]Felix Draxler, Christoph Schnörr, Ullrich Köthe:
Whitening Convergence Rate of Coupling-based Normalizing Flows. NeurIPS 2022 - [i28]Jonas Haldemann, Victor Ksoll, Daniel Walter, Yann Alibert, Ralf S. Klessen, Willy Benz, Ullrich Köthe, Lynton Ardizzone, Carsten Rother:
Exoplanet Characterization using Conditional Invertible Neural Networks. CoRR abs/2202.00027 (2022) - [i27]Titus Leistner, Radek Mackowiak, Lynton Ardizzone, Ullrich Köthe, Carsten Rother:
Towards Multimodal Depth Estimation from Light Fields. CoRR abs/2203.16542 (2022) - [i26]Malte Tölle, Ullrich Köthe, Florian André, Benjamin Meder, Sandy Engelhardt:
Content-Aware Differential Privacy with Conditional Invertible Neural Networks. CoRR abs/2207.14625 (2022) - [i25]Robert Schmier, Ullrich Köthe, Christoph-Nikolas Straehle:
Anomaly Detection using Contrastive Normalizing Flows. CoRR abs/2208.14024 (2022) - [i24]Felix Draxler, Christoph Schnörr, Ullrich Köthe:
Whitening Convergence Rate of Coupling-based Normalizing Flows. CoRR abs/2210.14032 (2022) - 2021
- [j13]Steffen Wolf, Alberto Bailoni, Constantin Pape, Nasim Rahaman, Anna Kreshuk, Ullrich Köthe, Fred A. Hamprecht:
The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 43(10): 3724-3738 (2021) - [j12]Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa Eichel, Till Bärnighausen, Ullrich Köthe:
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany. PLoS Comput. Biol. 17(10) (2021) - [c70]Jakob Kruse, Gianluca Detommaso, Ullrich Köthe, Robert Scheichl:
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference. AAAI 2021: 8191-8199 - [c69]Jan-Hinrich Nölke, Tim Adler, Janek Gröhl, Thomas Kirchner, Lynton Ardizzone, Carsten Rother, Ullrich Köthe, Lena Maier-Hein:
Invertible Neural Networks for Uncertainty Quantification in Photoacoustic Imaging. Bildverarbeitung für die Medizin 2021: 330-335 - [c68]Radek Mackowiak, Lynton Ardizzone, Ullrich Köthe, Carsten Rother:
Generative Classifiers as a Basis for Trustworthy Image Classification. CVPR 2021: 2971-2981 - [c67]Jens Müller, Robert Schmier, Lynton Ardizzone, Carsten Rother, Ullrich Köthe:
Learning Robust Models Using the Principle of Independent Causal Mechanisms. GCPR 2021: 79-110 - [i23]Jakob Kruse, Lynton Ardizzone, Carsten Rother, Ullrich Köthe:
Benchmarking Invertible Architectures on Inverse Problems. CoRR abs/2101.10763 (2021) - [i22]Lynton Ardizzone, Jakob Kruse, Carsten T. Lüth, Niels Bracher, Carsten Rother, Ullrich Köthe:
Conditional Invertible Neural Networks for Diverse Image-to-Image Translation. CoRR abs/2105.02104 (2021) - [i21]Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev:
BayesFlow can reliably detect Model Misspecification and Posterior Errors in Amortized Bayesian Inference. CoRR abs/2112.08866 (2021) - 2020
- [c66]Felix Draxler, Jonathan Schwarz, Christoph Schnörr, Ullrich Köthe:
Characterizing the Role of a Single Coupling Layer in Affine Normalizing Flows. GCPR 2020: 1-14 - [c65]Jonathan Schwarz, Felix Draxler, Ullrich Köthe, Christoph Schnörr:
Riemannian SOS-Polynomial Normalizing Flows. GCPR 2020: 218-231 - [c64]Lynton Ardizzone, Jakob Kruse, Carsten T. Lüth, Niels Bracher, Carsten Rother, Ullrich Köthe:
Conditional Invertible Neural Networks for Diverse Image-to-Image Translation. GCPR 2020: 373-387 - [c63]Peter Sorrenson, Carsten Rother, Ullrich Köthe:
Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN). ICLR 2020 - [c62]Lynton Ardizzone, Radek Mackowiak, Carsten Rother, Ullrich Köthe:
Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification. NeurIPS 2020 - [i20]Peter Sorrenson, Carsten Rother, Ullrich Köthe:
Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN). CoRR abs/2001.04872 (2020) - [i19]Lynton Ardizzone, Radek Mackowiak, Ullrich Köthe, Carsten Rother:
Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling. CoRR abs/2001.06448 (2020) - [i18]Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, Ullrich Köthe:
BayesFlow: Learning complex stochastic models with invertible neural networks. CoRR abs/2003.06281 (2020) - [i17]Stefan T. Radev, Marco D'Alessandro, Paul-Christian Bürkner, Ulf K. Mertens, Andreas Voss, Ullrich Köthe:
Amortized Bayesian model comparison with evidential deep learning. CoRR abs/2004.10629 (2020) - [i16]Radek Mackowiak, Lynton Ardizzone, Ullrich Köthe, Carsten Rother:
Generative Classifiers as a Basis for Trustworthy Computer Vision. CoRR abs/2007.15036 (2020) - [i15]Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa Eichel, Till Bärnighausen, Ullrich Köthe:
Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks. CoRR abs/2010.00300 (2020) - [i14]Jens Müller, Robert Schmier, Lynton Ardizzone, Carsten Rother, Ullrich Köthe:
Learning Robust Models Using The Principle of Independent Causal Mechanisms. CoRR abs/2010.07167 (2020) - [i13]Jan-Hinrich Nölke, Tim Adler, Janek Gröhl, Thomas Kirchner, Lynton Ardizzone, Carsten Rother, Ullrich Köthe, Lena Maier-Hein:
Invertible Neural Networks for Uncertainty Quantification in Photoacoustic Imaging. CoRR abs/2011.05110 (2020) - [i12]Darya Trofimova, Tim Adler, Lisa Kausch, Lynton Ardizzone, Klaus H. Maier-Hein, Ullrich Köthe, Carsten Rother, Lena Maier-Hein:
Representing Ambiguity in Registration Problems with Conditional Invertible Neural Networks. CoRR abs/2012.08195 (2020)
2010 – 2019
- 2019
- [j11]Tim J. Adler, Lynton Ardizzone, Anant Suraj Vemuri, Leonardo Ayala, Janek Gröhl, Thomas Kirchner, Sebastian J. Wirkert, Jakob Kruse, Carsten Rother, Ullrich Köthe, Lena Maier-Hein:
Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks. Int. J. Comput. Assist. Radiol. Surg. 14(6): 997-1007 (2019) - [c61]Ricard Durall, Franz-Josef Pfreundt, Ullrich Köthe, Janis Keuper:
Object Segmentation Using Pixel-Wise Adversarial Loss. GCPR 2019: 303-316 - [c60]The-Gia Leo Nguyen, Lynton Ardizzone, Ullrich Köthe:
Training Invertible Neural Networks as Autoencoders. GCPR 2019: 442-455 - [c59]Lynton Ardizzone, Jakob Kruse, Carsten Rother, Ullrich Köthe:
Analyzing Inverse Problems with Invertible Neural Networks. ICLR (Poster) 2019 - [c58]Tim J. Adler, Leonardo Ayala, Lynton Ardizzone, Hannes Kenngott, Anant Suraj Vemuri, Beat P. Müller-Stich, Carsten Rother, Ullrich Köthe, Lena Maier-Hein:
Out of Distribution Detection for Intra-operative Functional Imaging. UNSURE/CLIP@MICCAI 2019: 75-82 - [i11]Tim J. Adler, Lynton Ardizzone, Anant Suraj Vemuri, Leonardo Ayala, Janek Gröhl, Thomas Kirchner, Sebastian J. Wirkert, Jakob Kruse, Carsten Rother, Ullrich Köthe, Lena Maier-Hein:
Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks. CoRR abs/1903.03441 (2019) - [i10]Steffen Wolf, Alberto Bailoni, Constantin Pape, Nasim Rahaman, Anna Kreshuk, Ullrich Köthe, Fred A. Hamprecht:
The Mutex Watershed and its Objective: Efficient, Parameter-Free Image Partitioning. CoRR abs/1904.12654 (2019) - [i9]Gianluca Detommaso, Jakob Kruse, Lynton Ardizzone, Carsten Rother, Ullrich Köthe, Robert Scheichl:
HINT: Hierarchical Invertible Neural Transport for General and Sequential Bayesian inference. CoRR abs/1905.10687 (2019) - [i8]Lynton Ardizzone, Carsten T. Lüth, Jakob Kruse, Carsten Rother, Ullrich Köthe:
Guided Image Generation with Conditional Invertible Neural Networks. CoRR abs/1907.02392 (2019) - [i7]Ricard Durall, Franz-Josef Pfreundt, Ullrich Köthe, Janis Keuper:
Object Segmentation using Pixel-wise Adversarial Loss. CoRR abs/1909.10341 (2019) - [i6]Tim J. Adler, Leonardo Ayala, Lynton Ardizzone, Hannes Kenngott, Anant Suraj Vemuri, Beat P. Müller-Stich, Carsten Rother, Ullrich Köthe, Lena Maier-Hein:
Out of distribution detection for intra-operative functional imaging. CoRR abs/1911.01877 (2019) - 2018
- [j10]Nikola Krasowski, Thorsten Beier, Graham Knott, Ullrich Köthe, Fred A. Hamprecht, Anna Kreshuk:
Neuron Segmentation With High-Level Biological Priors. IEEE Trans. Medical Imaging 37(4): 829-839 (2018) - [c57]Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk, Ullrich Köthe, Fred A. Hamprecht:
The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. ECCV (4) 2018: 571-587 - [i5]Lynton Ardizzone, Jakob Kruse, Sebastian J. Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-Hein, Carsten Rother, Ullrich Köthe:
Analyzing Inverse Problems with Invertible Neural Networks. CoRR abs/1808.04730 (2018) - 2017
- [c56]Steffen Wolf, Lukas Schott, Ullrich Köthe, Fred A. Hamprecht:
Learned Watershed: End-to-End Learning of Seeded Segmentation. ICCV 2017: 2030-2038 - [i4]Steffen Wolf, Lukas Schott, Ullrich Köthe, Fred A. Hamprecht:
Learned Watershed: End-to-End Learning of Seeded Segmentation. CoRR abs/1704.02249 (2017) - 2016
- [j9]Michael Götz, Christian Weber, Franciszek Binczyk, Joanna Polanska, Rafal Tarnawski, Barbara Bobek-Billewicz, Ullrich Köthe, Jens Kleesiek, Bram Stieltjes, Klaus H. Maier-Hein:
DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated MR Images. IEEE Trans. Medical Imaging 35(1): 184-196 (2016) - [c55]Thorsten Beier, Björn Andres, Ullrich Köthe, Fred A. Hamprecht:
An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem. ECCV (2) 2016: 715-730 - 2015
- [j8]Martin Schiegg, Philipp Hanslovsky, Carsten Haubold, Ullrich Köthe, Lars Hufnagel, Fred A. Hamprecht:
Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinform. 31(6): 948-956 (2015) - [c54]Martin Schiegg, Ben Heuer, Carsten Haubold, Steffen Wolf, Ullrich Köthe, Fred A. Hamprecht:
Proof-reading guidance in cell tracking by sampling from tracking-by-assignment models. ISBI 2015: 394-398 - [c53]Nikola Krasowski, Thorsten Beier, Graham W. Knott, Ullrich Köthe, Fred A. Hamprecht, Anna Kreshuk:
Improving 3D EM data segmentation by joint optimization over boundary evidence and biological priors. ISBI 2015: 536-539 - 2014
- [c52]Thorsten Beier, Thorben Kröger, Jörg H. Kappes, Ullrich Köthe, Fred A. Hamprecht:
Cut, Glue, & Cut: A Fast, Approximate Solver for Multicut Partitioning. CVPR 2014: 73-80 - [c51]Luca Fiaschi, Ferran Diego Andilla, Konstantin Gregor, Martin Schiegg, Ullrich Köthe, Marta Zlatic, Fred A. Hamprecht:
Tracking Indistinguishable Translucent Objects over Time Using Weakly Supervised Structured Learning. CVPR 2014: 2736-2743 - [c50]Thorben Kröger, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, Fred A. Hamprecht:
Asymmetric Cuts: Joint Image Labeling and Partitioning. GCPR 2014: 199-211 - [c49]Christoph N. Straehle, Melih Kandemir, Ullrich Köthe, Fred A. Hamprecht:
Multiple Instance Learning with Response-Optimized Random Forests. ICPR 2014: 3768-3773 - 2013
- [c48]Christoph N. Straehle, Sven Peter, Ullrich Köthe, Fred A. Hamprecht:
K-Smallest Spanning Tree Segmentations. GCPR 2013: 375-384 - [c47]Christoph N. Straehle, Ullrich Köthe, Fred A. Hamprecht:
Weakly Supervised Learning of Image Partitioning Using Decision Trees with Structured Split Criteria. ICCV 2013: 1849-1856 - [c46]Thorben Kröger, Shawn Mikula, Winfried Denk, Ullrich Köthe, Fred A. Hamprecht:
Learning to Segment Neurons with Non-local Quality Measures. MICCAI (2) 2013: 419-427 - 2012
- [j7]Björn Andres, Ullrich Köthe, Thorben Kröger, Moritz Helmstaedter, Kevin L. Briggman, Winfried Denk, Fred A. Hamprecht:
3D segmentation of SBFSEM images of neuropil by a graphical model over supervoxel boundaries. Medical Image Anal. 16(4): 796-805 (2012) - [c45]Christoph N. Straehle, Ullrich Köthe, Graham Knott, Kevin L. Briggman, Winfried Denk, Fred A. Hamprecht:
Seeded watershed cut uncertainty estimators for guided interactive segmentation. CVPR 2012: 765-772 - [c44]Xinghua Lou, Ullrich Köthe, Jochen Wittbrodt, Fred A. Hamprecht:
Learning to segment dense cell nuclei with shape prior. CVPR 2012: 1012-1018 - [c43]Bernhard X. Kausler, Martin Schiegg, Björn Andres, Martin S. Lindner, Ullrich Köthe, Heike Leitte, Jochen Wittbrodt, Lars Hufnagel, Fred A. Hamprecht:
A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness. ECCV (3) 2012: 144-157 - [c42]Björn Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, Fred A. Hamprecht:
The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models. ECCV (7) 2012: 154-166 - [c41]Björn Andres, Thorben Kröger, Kevin L. Briggman, Winfried Denk, Natalya Korogod, Graham Knott, Ullrich Köthe, Fred A. Hamprecht:
Globally Optimal Closed-Surface Segmentation for Connectomics. ECCV (3) 2012: 778-791 - [c40]Luca Fiaschi, Ullrich Köthe, Rahul Nair, Fred A. Hamprecht:
Learning to count with regression forest and structured labels. ICPR 2012: 2685-2688 - [c39]Xinghua Lou, Luca Fiaschi, Ullrich Köthe, Fred A. Hamprecht:
Quality Classification of Microscopic Imagery with Weakly Supervised Learning. MLMI 2012: 176-183 - [e1]Ullrich Köthe, Annick Montanvert, Pierre Soille:
Applications of Discrete Geometry and Mathematical Morphology - First International Workshop, WADGMM 2010, Istanbul, Turkey, August 22, 2010, Revised Selected Papers. Lecture Notes in Computer Science 7346, Springer 2012, ISBN 978-3-642-32312-6 [contents] - 2011
- [j6]Björn Voss, Michael Hanselmann, Bernhard Y. Renard, Martin S. Lindner, Ullrich Köthe, Marc Kirchner, Fred A. Hamprecht:
SIMA: Simultaneous Multiple Alignment of LC/MS Peak Lists. Bioinform. 27(7): 987-993 (2011) - [c38]Björn Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, Fred A. Hamprecht:
Probabilistic image segmentation with closedness constraints. ICCV 2011: 2611-2618 - [c37]Anna Kreshuk, Christoph N. Straehle, Christoph Sommer, Ullrich Köthe, Graham Knott, Fred A. Hamprecht:
Automated segmentation of synapses in 3D EM data. ISBI 2011: 220-223 - [c36]Christoph Sommer, Christoph N. Straehle, Ullrich Köthe, Fred A. Hamprecht:
Ilastik: Interactive learning and segmentation toolkit. ISBI 2011: 230-233 - [c35]Xinghua Lou, Frederik O. Kaster, Martin S. Lindner, Bernhard X. Kausler, Ullrich Köthe, Burkhard Hockendorf, Jochen Wittbrodt, Heike Jänicke, Fred A. Hamprecht:
Deltr: Digital embryo lineage tree reconstructor. ISBI 2011: 1557-1560 - [c34]Christoph N. Straehle, Ullrich Köthe, Graham Knott, Fred A. Hamprecht:
Carving: Scalable Interactive Segmentation of Neural Volume Electron Microscopy Images. MICCAI (1) 2011: 653-660 - [c33]Bjoern H. Menze, B. Michael Kelm, Daniel Nicolas Splitthoff, Ullrich Köthe, Fred A. Hamprecht:
On Oblique Random Forests. ECML/PKDD (2) 2011: 453-469 - 2010
- [j5]Marc Kirchner, Bernhard Y. Renard, Ullrich Köthe, Darryl J. Pappin, Fred A. Hamprecht, Hanno Steen, Judith A. J. Steen:
Computational protein profile similarity screening for quantitative mass spectrometry experiments. Bioinform. 26(1): 77-83 (2010) - [j4]Xinghua Lou, Marc Kirchner, Bernhard Y. Renard, Ullrich Köthe, Sebastian Boppel, Christian Graf, Chung-Tien Lee, Judith A. J. Steen, Hanno Steen, Matthias P. Mayer, Fred A. Hamprecht:
Deuteration distribution estimation with improved sequence coverage for HX/MS experiments. Bioinform. 26(12): 1535-1541 (2010) - [c32]Björn Andres, Jörg H. Kappes, Ullrich Köthe, Christoph Schnörr, Fred A. Hamprecht:
An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM. DAGM-Symposium 2010: 353-362 - [c31]Ullrich Köthe, Björn Andres, Thorben Kröger, Fred A. Hamprecht:
Geometric Analysis of 3D Electron Microscopy Data. WADGMM 2010: 93-108 - [i3]Björn Andres, Ullrich Köthe, Thorben Kröger, Fred A. Hamprecht:
Runtime-Flexible Multi-dimensional Arrays and Views for C++98 and C++0x. CoRR abs/1008.2909 (2010) - [i2]Björn Andres, Jörg H. Kappes, Ullrich Köthe, Fred A. Hamprecht:
The Lazy Flipper: MAP Inference in Higher-Order Graphical Models by Depth-limited Exhaustive Search. CoRR abs/1009.4102 (2010) - [i1]Björn Andres, Ullrich Köthe, Thorben Kröger, Fred A. Hamprecht:
How to Extract the Geometry and Topology from Very Large 3D Segmentations. CoRR abs/1009.6215 (2010)
2000 – 2009
- 2009
- [j3]Hans Meine, Ullrich Köthe, Peer Stelldinger:
A topological sampling theorem for Robust boundary reconstruction and image segmentation. Discret. Appl. Math. 157(3): 524-541 (2009) - [c30]Christian Bähnisch, Peer Stelldinger, Ullrich Köthe:
Fast and Accurate 3D Edge Detection for Surface Reconstruction. DAGM-Symposium 2009: 111-120 - [c29]Björn Andres, Ullrich Köthe, Andreea Bonea, Boaz Nadler, Fred A. Hamprecht:
Quantitative Assessment of Image Segmentation Quality by Random Walk Relaxation Times. DAGM-Symposium 2009: 502-511 - [c28]Michael Hanselmann, Ullrich Köthe, Bernhard Y. Renard, Marc Kirchner, Ron M. A. Heeren, Fred A. Hamprecht:
Multivariate Watershed Segmentation of Compositional Data. DGCI 2009: 180-192 - [c27]Hans Meine, Peer Stelldinger, Ullrich Köthe:
Pixel Approximation Errors in Common Watershed Algorithms. DGCI 2009: 193-202 - 2008
- [c26]Björn Andres, Claudia Kondermann, Daniel Kondermann, Ullrich Köthe, Fred A. Hamprecht, Christoph S. Garbe:
On errors-in-variables regression with arbitrary covariance and its application to optical flow estimation. CVPR 2008 - [c25]Björn Andres, Ullrich Köthe, Moritz Helmstaedter, Winfried Denk, Fred A. Hamprecht:
Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification. DAGM-Symposium 2008: 142-152 - [c24]Ullrich Köthe:
What Can We Learn from Discrete Images about the Continuous World?. DGCI 2008: 4-19 - 2006
- [j2]Peer Stelldinger, Ullrich Köthe:
Connectivity preserving digitization of blurred binary images in 2D and 3D. Comput. Graph. 30(1): 70-76 (2006) - [c23]Ullrich Köthe, Peer Stelldinger, Hans Meine:
Provably Correct Edgel Linking and Subpixel Boundary Reconstruction. DAGM-Symposium 2006: 81-90 - [c22]Peer Stelldinger, Ullrich Köthe, Hans Meine:
Topologically Correct Image Segmentation Using Alpha Shapes. DGCI 2006: 542-554 - [c21]Hans Meine, Ullrich Köthe:
A New Sub-pixel Map for Image Analysis. IWCIA 2006: 116-130 - [c20]Gunnar Kedenburg, Chris A. Cocosco, Ullrich Köthe, Wiro J. Niessen, Evert-Jan Vonken, Max A. Viergever:
Automatic cardiac MRI myocardium segmentation using graphcut. Image Processing 2006: 61440A - [p1]Ullrich Köthe:
Low-level Feature Detection Using the Boundary Tensor. Visualization and Processing of Tensor Fields 2006: 63-79 - 2005
- [j1]Peer Stelldinger, Ullrich Köthe:
Towards a general sampling theory for shape preservation. Image Vis. Comput. 23(2): 237-248 (2005) - [c19]Peer Stelldinger, Ullrich Köthe:
Shape Preserving Digitization of Binary Images After Blurring. DGCI 2005: 383-391 - [c18]Hans Meine, Ullrich Köthe:
The GeoMap: A Unified Representation for Topology and Geometry. GbRPR 2005: 132-141 - [c17]Ullrich Köthe, Michael Felsberg:
Riesz-Transforms Versus Derivatives: On the Relationship Between the Boundary Tensor and the Energy Tensor. Scale-Space 2005: 179-191 - [c16]Michael Felsberg, Ullrich Köthe:
GET: The Connection Between Monogenic Scale-Space and Gaussian Derivatives. Scale-Space 2005: 192-203 - 2004
- [c15]Hans Meine, Ullrich Köthe, H. Siegfried Stiehl:
Fast and Accurate Interactive Image Segmentation in the GEOMAP Framework. Bildverarbeitung für die Medizin 2004: 60-64 - [c14]Ullrich Köthe:
Accurate and Efficient Approximation of the Continuous Gaussian Scale-Space. DAGM-Symposium 2004: 350-358 - [c13]Ullrich Köthe:
Boundary Characterization Within the Wedge-Channel Representation. IWCM 2004: 42-53 - 2003
- [c12]Ullrich Köthe:
Edge and Junction Detection with an Improved Structure Tensor. DAGM-Symposium 2003: 25-32 - [c11]Peer Stelldinger, Ullrich Köthe:
Shape Preservation during Digitization: Tight Bounds Based on the Morphing Distance. DAGM-Symposium 2003: 108-115 - [c10]Ullrich Köthe, Peer Stelldinger:
Shape Preserving Digitization of Ideal and Blurred Binary Images. DGCI 2003: 82-91 - [c9]Ullrich Köthe:
Integrated Edge and Junction Detection with the Boundary Tensor. ICCV 2003: 424-431 - 2002
- [c8]Ullrich Köthe:
XPMaps and Topological Segmentation - A Unified Approach to Finite Topologies in the Plane. DGCI 2002: 22-33 - [c7]Ullrich Köthe:
Deriving Topological Representations from Edge Images. Theoretical Foundations of Computer Vision 2002: 320-334 - 2000
- [c6]Ullrich Köthe:
Generic Programming Techniques that Make Planar Cell Complexes Easy to Use. Digital and Image Geometry 2000: 17-37
1990 – 1999
- 1998
- [c5]Ullrich Köthe, Karsten Weihe:
The STL Model in the Geometric Domain. Generic Programming 1998: 232-248 - [c4]Ullrich Köthe:
Design Patterns for Independent Building Blocks. EuroPLoP 1998: 143-166 - 1997
- [c3]Andreas Schlempp, Ullrich Köthe:
ViComp - Architektur und Städteplanung mit virtueller Modellierung und Komposition. SimVis 1997: 135-146 - 1996
- [c2]Ullrich Köthe:
Local Appropriate Scale in Morphological Scale-Space. ECCV (1) 1996: 219-228 - 1995
- [c1]Ullrich Köthe:
Primary Image Segmentation. DAGM-Symposium 1995: 554-561
Coauthor Index
aka: Björn Andres
aka: Paul-Christian Bürkner
aka: Christoph-Nikolas Straehle
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-30 00:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint