default search action
Taco Cohen
Person information
- affiliation: University of Amsterdam, The Netherlands
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c40]Pim de Haan, Taco Cohen, Johann Brehmer:
Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant Transformers. AISTATS 2024: 3088-3096 - [c39]Natasha Butt, Blazej Manczak, Auke J. Wiggers, Corrado Rainone, David W. Zhang, Michaël Defferrard, Taco Cohen:
CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay. ICML 2024 - [c38]Pietro Mazzaglia, Taco Cohen, Daniel Dijkman:
Information-driven Affordance Discovery for Efficient Robotic Manipulation. ICRA 2024: 7780-7787 - [i59]Natasha Butt, Blazej Manczak, Auke J. Wiggers, Corrado Rainone, David W. Zhang, Michaël Defferrard, Taco Cohen:
CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay. CoRR abs/2402.04858 (2024) - [i58]Pietro Mazzaglia, Taco Cohen, Daniel Dijkman:
Information-driven Affordance Discovery for Efficient Robotic Manipulation. CoRR abs/2405.03865 (2024) - [i57]Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, Gabriel Synnaeve:
RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning. CoRR abs/2410.02089 (2024) - [i56]Kunhao Zheng, Juliette Decugis, Jonas Gehring, Taco Cohen, Benjamin Négrevergne, Gabriel Synnaeve:
What Makes Large Language Models Reason in (Multi-Turn) Code Generation? CoRR abs/2410.08105 (2024) - [i55]Johann Brehmer, Sönke Behrends, Pim de Haan, Taco Cohen:
Does equivariance matter at scale? CoRR abs/2410.23179 (2024) - 2023
- [j6]Ties van Rozendaal, Johann Brehmer, Yunfan Zhang, Reza Pourreza, Auke J. Wiggers, Taco Cohen:
Instance-Adaptive Video Compression: Improving Neural Codecs by Training on the Test Set. Trans. Mach. Learn. Res. 2023 (2023) - [c37]Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves:
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems. ICLR 2023 - [c36]Chaitanya K. Joshi, Cristian Bodnar, Simon V. Mathis, Taco Cohen, Pietro Lio:
On the Expressive Power of Geometric Graph Neural Networks. ICML 2023: 15330-15355 - [c35]Johann Brehmer, Joey Bose, Pim de Haan, Taco S. Cohen:
EDGI: Equivariant Diffusion for Planning with Embodied Agents. NeurIPS 2023 - [c34]Johann Brehmer, Pim de Haan, Sönke Behrends, Taco S. Cohen:
Geometric Algebra Transformer. NeurIPS 2023 - [c33]Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves:
BISCUIT: Causal Representation Learning from Binary Interactions. UAI 2023: 1263-1273 - [i54]Chaitanya K. Joshi, Cristian Bodnar, Simon V. Mathis, Taco Cohen, Pietro Liò:
On the Expressive Power of Geometric Graph Neural Networks. CoRR abs/2301.09308 (2023) - [i53]Johann Brehmer, Joey Bose, Pim de Haan, Taco Cohen:
EDGI: Equivariant Diffusion for Planning with Embodied Agents. CoRR abs/2303.12410 (2023) - [i52]Johann Brehmer, Pim de Haan, Sönke Behrends, Taco Cohen:
Geometric Algebra Transformers. CoRR abs/2305.18415 (2023) - [i51]Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves:
BISCUIT: Causal Representation Learning from Binary Interactions. CoRR abs/2306.09643 (2023) - [i50]Pietro Mazzaglia, Taco Cohen, Daniel Dijkman:
Uncertainty-driven Affordance Discovery for Efficient Robotics Manipulation. CoRR abs/2308.14915 (2023) - [i49]Pim de Haan, Taco Cohen, Johann Brehmer:
Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant Transformers. CoRR abs/2311.04744 (2023) - [i48]Ekdeep Singh Lubana, Johann Brehmer, Pim de Haan, Taco Cohen:
FoMo Rewards: Can we cast foundation models as reward functions? CoRR abs/2312.03881 (2023) - [i47]Alexandre Duval, Simon V. Mathis, Chaitanya K. Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D. Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, Michael M. Bronstein:
A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems. CoRR abs/2312.07511 (2023) - 2022
- [j5]Stefanos Zafeiriou, Michael M. Bronstein, Taco Cohen, Oriol Vinyals, Le Song, Jure Leskovec, Pietro Liò, Joan Bruna, Marco Gori:
Guest Editorial: Non-Euclidean Machine Learning. IEEE Trans. Pattern Anal. Mach. Intell. 44(2): 723-726 (2022) - [j4]Sourya Basu, Jose Gallego-Posada, Francesco Viganò, James Rowbottom, Taco Cohen:
Equivariant Mesh Attention Networks. Trans. Mach. Learn. Res. 2022 (2022) - [c32]Yura Perugachi-Diaz, Guillaume Sautière, Davide Abati, Yang Yang, Amirhossein Habibian, Taco S. Cohen:
Region-of-Interest Based Neural Video Compression. BMVC 2022: 288 - [c31]Phillip Lippe, Taco Cohen, Efstratios Gavves:
Efficient Neural Causal Discovery without Acyclicity Constraints. ICLR 2022 - [c30]Yinhao Zhu, Yang Yang, Taco Cohen:
Transformer-based Transform Coding. ICLR 2022 - [c29]Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Stratis Gavves:
CITRIS: Causal Identifiability from Temporal Intervened Sequences. ICML 2022: 13557-13603 - [c28]Arash Behboodi, Gabriele Cesa, Taco S. Cohen:
A PAC-Bayesian Generalization Bound for Equivariant Networks. NeurIPS 2022 - [c27]Johann Brehmer, Pim de Haan, Phillip Lippe, Taco S. Cohen:
Weakly supervised causal representation learning. NeurIPS 2022 - [c26]Gabriele Cesa, Arash Behboodi, Taco S. Cohen, Max Welling:
On the symmetries of the synchronization problem in Cryo-EM: Multi-Frequency Vector Diffusion Maps on the Projective Plane. NeurIPS 2022 - [i46]Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves:
CITRIS: Causal Identifiability from Temporal Intervened Sequences. CoRR abs/2202.03169 (2022) - [i45]Yura Perugachi-Diaz, Guillaume Sautière, Davide Abati, Yang Yang, Amirhossein Habibian, Taco S. Cohen:
Region-of-Interest Based Neural Video Compression. CoRR abs/2203.01978 (2022) - [i44]Johann Brehmer, Pim de Haan, Phillip Lippe, Taco Cohen:
Weakly supervised causal representation learning. CoRR abs/2203.16437 (2022) - [i43]Sourya Basu, Jose Gallego-Posada, Francesco Viganò, James Rowbottom, Taco Cohen:
Equivariant Mesh Attention Networks. CoRR abs/2205.10662 (2022) - [i42]Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves:
iCITRIS: Causal Representation Learning for Instantaneous Temporal Effects. CoRR abs/2206.06169 (2022) - [i41]Taco Cohen:
Towards a Grounded Theory of Causation for Embodied AI. CoRR abs/2206.13973 (2022) - [i40]Arash Behboodi, Gabriele Cesa, Taco Cohen:
A PAC-Bayesian Generalization Bound for Equivariant Networks. CoRR abs/2210.13150 (2022) - [i39]Risto Vuorio, Johann Brehmer, Hanno Ackermann, Daniel Dijkman, Taco Cohen, Pim de Haan:
Deconfounded Imitation Learning. CoRR abs/2211.02667 (2022) - 2021
- [c25]Amirhossein Habibian, Davide Abati, Taco S. Cohen, Babak Ehteshami Bejnordi:
Skip-Convolutions for Efficient Video Processing. CVPR 2021: 2695-2704 - [c24]Reza Pourreza, Taco Cohen:
Extending Neural P-frame Codecs for B-frame Coding. ICCV 2021: 6660-6669 - [c23]Yadong Lu, Yinhao Zhu, Yang Yang, Amir Said, Taco S. Cohen:
Progressive Neural Image Compression With Nested Quantization And Latent Ordering. ICIP 2021: 539-543 - [c22]Pim de Haan, Maurice Weiler, Taco Cohen, Max Welling:
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs. ICLR 2021 - [c21]Ties van Rozendaal, Iris A. M. Huijben, Taco Cohen:
Overfitting for Fun and Profit: Instance-Adaptive Data Compression. ICLR 2021 - [i38]Ties van Rozendaal, Iris A. M. Huijben, Taco S. Cohen:
Overfitting for Fun and Profit: Instance-Adaptive Data Compression. CoRR abs/2101.08687 (2021) - [i37]Yadong Lu, Yinhao Zhu, Yang Yang, Amir Said, Taco S. Cohen:
Progressive Neural Image Compression with Nested Quantization and Latent Ordering. CoRR abs/2102.02913 (2021) - [i36]Hilmi E. Egilmez, Ankitesh K. Singh, Muhammed Z. Coban, Marta Karczewicz, Yinhao Zhu, Yang Yang, Amir Said, Taco S. Cohen:
Transform Network Architectures for Deep Learning based End-to-End Image/Video Coding in Subsampled Color Spaces. CoRR abs/2103.01760 (2021) - [i35]Reza Pourreza, Taco S. Cohen:
Extending Neural P-frame Codecs for B-frame Coding. CoRR abs/2104.00531 (2021) - [i34]Ankitesh K. Singh, Hilmi E. Egilmez, Reza Pourreza, Muhammed Z. Coban, Marta Karczewicz, Taco S. Cohen:
A Combined Deep Learning based End-to-End Video Coding Architecture for YUV Color Space. CoRR abs/2104.00807 (2021) - [i33]Amirhossein Habibian, Davide Abati, Taco S. Cohen, Babak Ehteshami Bejnordi:
Skip-Convolutions for Efficient Video Processing. CoRR abs/2104.11487 (2021) - [i32]Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovic:
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. CoRR abs/2104.13478 (2021) - [i31]Phillip Lippe, Taco Cohen, Efstratios Gavves:
Efficient Neural Causal Discovery without Acyclicity Constraints. CoRR abs/2107.10483 (2021) - [i30]Ties van Rozendaal, Johann Brehmer, Yunfan Zhang, Reza Pourreza, Taco S. Cohen:
Instance-Adaptive Video Compression: Improving Neural Codecs by Training on the Test Set. CoRR abs/2111.10302 (2021) - [i29]Yunfan Zhang, Ties van Rozendaal, Johann Brehmer, Markus Nagel, Taco Cohen:
Implicit Neural Video Compression. CoRR abs/2112.11312 (2021) - 2020
- [j3]Tambet Matiisen, Avital Oliver, Taco Cohen, John Schulman:
Teacher-Student Curriculum Learning. IEEE Trans. Neural Networks Learn. Syst. 31(9): 3732-3740 (2020) - [c20]Adam Golinski, Reza Pourreza, Yang Yang, Guillaume Sautière, Taco S. Cohen:
Feedback Recurrent Autoencoder for Video Compression. ACCV (4) 2020: 591-607 - [c19]Ties van Rozendaal, Guillaume Sautière, Taco S. Cohen:
Lossy Compression with Distortion Constrained Optimization. CVPR Workshops 2020: 634-639 - [c18]Vijay Veerabadran, Reza Pourreza, AmirHossein Habibian, Taco Cohen:
Adversarial Distortion for Learned Video Compression. CVPR Workshops 2020: 640-644 - [c17]Yang Yang, Guillaume Sautière, J. Jon Ryu, Taco S. Cohen:
Feedback Recurrent Autoencoder. ICASSP 2020: 3347-3351 - [c16]Adeel Pervez, Taco Cohen, Efstratios Gavves:
Low Bias Low Variance Gradient Estimates for Boolean Stochastic Networks. ICML 2020: 7632-7640 - [c15]Dana Kianfar, Auke J. Wiggers, Amir Said, Reza Pourreza, Taco Cohen:
Parallelized Rate-Distortion Optimized Quantization Using Deep Learning. MMSP 2020: 1-6 - [c14]Pim de Haan, Taco S. Cohen, Max Welling:
Natural Graph Networks. NeurIPS 2020 - [i28]Emiel Hoogeboom, Taco S. Cohen, Jakub M. Tomczak:
Learning Discrete Distributions by Dequantization. CoRR abs/2001.11235 (2020) - [i27]Pim de Haan, Maurice Weiler, Taco Cohen, Max Welling:
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs. CoRR abs/2003.05425 (2020) - [i26]Adam Golinski, Reza Pourreza, Yang Yang, Guillaume Sautière, Taco S. Cohen:
Feedback Recurrent Autoencoder for Video Compression. CoRR abs/2004.04342 (2020) - [i25]Vijay Veerabadran, Reza Pourreza, AmirHossein Habibian, Taco Cohen:
Adversarial Distortion for Learned Video Compression. CoRR abs/2004.09508 (2020) - [i24]Mirgahney Mohamed, Gabriele Cesa, Taco S. Cohen, Max Welling:
A Data and Compute Efficient Design for Limited-Resources Deep Learning. CoRR abs/2004.09691 (2020) - [i23]Ties van Rozendaal, Guillaume Sautière, Taco S. Cohen:
Lossy Compression with Distortion Constrained Optimization. CoRR abs/2005.04064 (2020) - [i22]Pim de Haan, Taco Cohen, Max Welling:
Natural Graph Networks. CoRR abs/2007.08349 (2020) - [i21]Dana Kianfar, Auke J. Wiggers, Amir Said, Reza Pourreza, Taco Cohen:
Parallelized Rate-Distortion Optimized Quantization Using Deep Learning. CoRR abs/2012.06380 (2020)
2010 – 2019
- 2019
- [j2]Marysia Winkels, Taco S. Cohen:
Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Anal. 55: 15-26 (2019) - [c13]AmirHossein Habibian, Ties van Rozendaal, Jakub M. Tomczak, Taco Cohen:
Video Compression With Rate-Distortion Autoencoders. ICCV 2019: 7032-7041 - [c12]Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, Max Welling:
Gauge Equivariant Convolutional Networks and the Icosahedral CNN. ICML 2019: 1321-1330 - [c11]Taco S. Cohen, Mario Geiger, Maurice Weiler:
A General Theory of Equivariant CNNs on Homogeneous Spaces. NeurIPS 2019: 9142-9153 - [i20]Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, Max Welling:
Gauge Equivariant Convolutional Networks and the Icosahedral CNN. CoRR abs/1902.04615 (2019) - [i19]Miranda C. N. Cheng, Vassilis Anagiannis, Maurice Weiler, Pim de Haan, Taco S. Cohen, Max Welling:
Covariance in Physics and Convolutional Neural Networks. CoRR abs/1906.02481 (2019) - [i18]AmirHossein Habibian, Ties van Rozendaal, Jakub M. Tomczak, Taco S. Cohen:
Video Compression With Rate-Distortion Autoencoders. CoRR abs/1908.05717 (2019) - [i17]Yang Yang, Guillaume Sautière, J. Jon Ryu, Taco S. Cohen:
Feedback Recurrent AutoEncoder. CoRR abs/1911.04018 (2019) - 2018
- [c10]Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling:
Spherical CNNs. ICLR 2018 - [c9]Emiel Hoogeboom, Jorn W. T. Peters, Taco S. Cohen, Max Welling:
HexaConv. ICLR (Poster) 2018 - [c8]Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, Max Welling:
Rotation Equivariant CNNs for Digital Pathology. MICCAI (2) 2018: 210-218 - [c7]Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, Taco Cohen:
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. NeurIPS 2018: 10402-10413 - [i16]Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling:
Spherical CNNs. CoRR abs/1801.10130 (2018) - [i15]Emiel Hoogeboom, Jorn W. T. Peters, Taco S. Cohen, Max Welling:
HexaConv. CoRR abs/1803.02108 (2018) - [i14]Taco S. Cohen, Mario Geiger, Maurice Weiler:
Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks). CoRR abs/1803.10743 (2018) - [i13]Marysia Winkels, Taco S. Cohen:
3D G-CNNs for Pulmonary Nodule Detection. CoRR abs/1804.04656 (2018) - [i12]Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, Max Welling:
Rotation Equivariant CNNs for Digital Pathology. CoRR abs/1806.03962 (2018) - [i11]Jasper Linmans, Jim Winkens, Bastiaan S. Veeling, Taco S. Cohen, Max Welling:
Sample Efficient Semantic Segmentation using Rotation Equivariant Convolutional Networks. CoRR abs/1807.00583 (2018) - [i10]Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, Taco Cohen:
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. CoRR abs/1807.02547 (2018) - [i9]Luca Falorsi, Pim de Haan, Tim R. Davidson, Nicola De Cao, Maurice Weiler, Patrick Forré, Taco S. Cohen:
Explorations in Homeomorphic Variational Auto-Encoding. CoRR abs/1807.04689 (2018) - [i8]Taco Cohen, Mario Geiger, Maurice Weiler:
A General Theory of Equivariant CNNs on Homogeneous Spaces. CoRR abs/1811.02017 (2018) - 2017
- [j1]A. Eck, Luisa M. Zintgraf, E. F. J. de Groot, Tim G. J. de Meij, Taco S. Cohen, P. H. M. Savelkoul, Max Welling, A. E. Budding:
Interpretation of microbiota-based diagnostics by explaining individual classifier decisions. BMC Bioinform. 18(1): 441:1-441:13 (2017) - [c6]Taco S. Cohen, Max Welling:
Steerable CNNs. ICLR (Poster) 2017 - [c5]Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, Max Welling:
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis. ICLR (Poster) 2017 - [i7]Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, Max Welling:
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis. CoRR abs/1702.04595 (2017) - [i6]Tambet Matiisen, Avital Oliver, Taco Cohen, John Schulman:
Teacher-Student Curriculum Learning. CoRR abs/1707.00183 (2017) - [i5]Taco Cohen, Mario Geiger, Jonas Köhler, Max Welling:
Convolutional Networks for Spherical Signals. CoRR abs/1709.04893 (2017) - 2016
- [c4]Taco Cohen, Max Welling:
Group Equivariant Convolutional Networks. ICML 2016: 2990-2999 - [i4]Taco S. Cohen, Max Welling:
Group Equivariant Convolutional Networks. CoRR abs/1602.07576 (2016) - [i3]Luisa M. Zintgraf, Taco S. Cohen, Max Welling:
A New Method to Visualize Deep Neural Networks. CoRR abs/1603.02518 (2016) - [i2]Taco S. Cohen, Max Welling:
Steerable CNNs. CoRR abs/1612.08498 (2016) - 2015
- [c3]Taco Cohen, Max Welling:
Harmonic Exponential Families on Manifolds. ICML 2015: 1757-1765 - [c2]Taco S. Cohen, Max Welling:
Transformation Properties of Learned Visual Representations. ICLR (Poster) 2015 - 2014
- [c1]Taco Cohen, Max Welling:
Learning the Irreducible Representations of Commutative Lie Groups. ICML 2014: 1755-1763 - [i1]Taco Cohen, Max Welling:
Learning the Irreducible Representations of Commutative Lie Groups. CoRR abs/1402.4437 (2014)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:18 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint