default search action
Bao-Liang Lu
Person information
- affiliation: Shanghai Jiao Tong University, Shanghai, China
- unicode name: 吕宝粮
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j71]Cunbo Li, Peiyang Li, Zhaojin Chen, Lei Yang, Fali Li, Feng Wan, Zehong Cao, Dezhong Yao, Bao-Liang Lu, Peng Xu:
Brain Network Manifold Learned by Cognition-Inspired Graph Embedding Model for Emotion Recognition. IEEE Trans. Syst. Man Cybern. Syst. 54(12): 7794-7808 (2024) - [c212]Ziyi Li, Li-Ming Zhao, Wei-Long Zheng, Bao-Liang Lu:
Temporal-Spatial Prediction: Pre-Training on Diverse Datasets for EEG Classification. ICASSP 2024: 1806-1810 - [c211]Wei-Bang Jiang, Ziyi Li, Wei-Long Zheng, Bao-Liang Lu:
Functional Emotion Transformer for EEG-Assisted Cross-Modal Emotion Recognition. ICASSP 2024: 1841-1845 - [c210]Yu-Ting Lan, Wei-Bang Jiang, Wei-Long Zheng, Bao-Liang Lu:
CEMOAE: A Dynamic Autoencoder with Masked Channel Modeling for Robust EEG-Based Emotion Recognition. ICASSP 2024: 1871-1875 - [c209]Pengxuan Gao, Tianyu Liu, Jia-Wen Liu, Bao-Liang Lu, Wei-Long Zheng:
Multimodal Multi-View Spectral-Spatial-Temporal Masked Autoencoder for Self-Supervised Emotion Recognition. ICASSP 2024: 1926-1930 - [c208]Wei-Bang Jiang, Li-Ming Zhao, Bao-Liang Lu:
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI. ICLR 2024 - [c207]Tian-Fang Ma, Lu-Yu Liu, Li-Ming Zhao, Dan Peng, Yong Lu, Wei-Long Zheng, Bao-Liang Lu:
Detecting Major Depression Disorder with Multiview Eye Movement Features in a Novel Oil Painting Paradigm. IJCNN 2024: 1-8 - [c206]Wei-Bang Jiang, Yu-Ting Lan, Bao-Liang Lu:
REmoNet: Reducing Emotional Label Noise via Multi-regularized Self-supervision. ACM Multimedia 2024: 2204-2213 - [i23]Wei-Bang Jiang, Li-Ming Zhao, Bao-Liang Lu:
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI. CoRR abs/2405.18765 (2024) - [i22]Tian-Hua Li, Tian-Fang Ma, Dan Peng, Wei-Long Zheng, Bao-Liang Lu:
Focused State Recognition Using EEG with Eye Movement-Assisted Annotation. CoRR abs/2407.09508 (2024) - [i21]Yifei Yang, Runhan Shi, Zuchao Li, Shu Jiang, Bao-Liang Lu, Yang Yang, Hai Zhao:
BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction. CoRR abs/2408.10285 (2024) - [i20]Wei-Bang Jiang, Yansen Wang, Bao-Liang Lu, Dongsheng Li:
NeuroLM: A Universal Multi-task Foundation Model for Bridging the Gap between Language and EEG Signals. CoRR abs/2409.00101 (2024) - [i19]Xuan-Hao Liu, Xinhao Song, Dexuan He, Bao-Liang Lu, Wei-Long Zheng:
Professor X: Manipulating EEG BCI with Invisible and Robust Backdoor Attack. CoRR abs/2409.20158 (2024) - 2023
- [j70]Dongrui Wu, Bao-Liang Lu, Bin Hu, Zhigang Zeng:
Affective Brain-Computer Interfaces (aBCIs): A Tutorial. Proc. IEEE 111(10): 1314-1332 (2023) - [j69]Yong Peng, Keding Chen, Feiping Nie, Bao-Liang Lu, Wanzeng Kong:
Two-Dimensional Embedded Fuzzy Data Clustering. IEEE Trans. Emerg. Top. Comput. Intell. 7(4): 1263-1275 (2023) - [j68]Yong Peng, Wenna Huang, Wanzeng Kong, Feiping Nie, Bao-Liang Lu:
JGSED: An End-to-End Spectral Clustering Model for Joint Graph Construction, Spectral Embedding and Discretization. IEEE Trans. Emerg. Top. Comput. Intell. 7(6): 1687-1701 (2023) - [j67]Yong Peng, Honggang Liu, Wanzeng Kong, Feiping Nie, Bao-Liang Lu, Andrzej Cichocki:
Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition. IEEE Trans. Ind. Informatics 19(7): 8104-8115 (2023) - [c205]Jing-Yi Liu, Jia-Wen Liu, Wei-Long Zheng, Bao-Liang Lu:
Transformer-Based Domain Adaptation for Multi-Modal Emotion Recognition in Response to Game Animation Videos. BIBM 2023: 879-884 - [c204]Rong-Fei Gu, Li-Ming Zhao, Wei-Long Zheng, Bao-Liang Lu:
Tagging Continuous Labels for EEG-based Emotion Classification. EMBC 2023: 1-4 - [c203]Yu-Ting Lan, Dan Peng, Wei Liu, Yun Luo, Ziyu Mao, Wei-Long Zheng, Bao-Liang Lu:
Investigating Emotion EEG Patterns for Depression Detection with Attentive Simple Graph Convolutional Network. EMBC 2023: 1-4 - [c202]Luyu Liu, Dan Peng, Wei-Long Zheng, Bao-Liang Lu:
Objective Depression Detection Using EEG and Eye Movement Signals Induced by Oil Paintings. EMBC 2023: 1-4 - [c201]Dan Peng, Wei Liu, Yun Luo, Ziyu Mao, Wei-Long Zheng, Bao-Liang Lu:
Deep Depression Detection with Resting-State and Cognitive-Task EEG. EMBC 2023: 1-4 - [c200]Wei-Bang Jiang, Xu Yan, Wei-Long Zheng, Bao-Liang Lu:
Elastic Graph Transformer Networks for EEG-Based Emotion Recognition. ICASSP 2023: 1-5 - [c199]Xuan-Hao Liu, Wei-Bang Jiang, Wei-Long Zheng, Bao-Liang Lu:
Two-Stream Spectral-Temporal Denoising Network for End-to-End Robust EEG-Based Emotion Recognition. ICONIP (3) 2023: 186-197 - [c198]Jian-Ming Zhang, Jiawen Liu, Ziyi Li, Tian-Fang Ma, Yiting Wang, Wei-Long Zheng, Bao-Liang Lu:
Naturalistic Emotion Recognition Using EEG and Eye Movements. ICONIP (3) 2023: 265-276 - [c197]Zhong-Wei Jin, Jiawen Liu, Wei-Long Zheng, Bao-Liang Lu:
DAformer: Transformer with Domain Adversarial Adaptation for EEG-Based Emotion Recognition with Live-Oil Paintings. ICONIP (9) 2023: 402-414 - [c196]Rong-Fei Gu, Rui Li, Wei-Long Zheng, Bao-Liang Lu:
Cross-Subject Decision Confidence Estimation from EEG Signals Using Spectral-Spatial-Temporal Adaptive GCN with Domain Adaptation. IJCNN 2023: 1-8 - [c195]Wei-Bang Jiang, Xuan-Hao Liu, Wei-Long Zheng, Bao-Liang Lu:
Multimodal Adaptive Emotion Transformer with Flexible Modality Inputs on A Novel Dataset with Continuous Labels. ACM Multimedia 2023: 5975-5984 - [c194]Cheng Fei, Rui Li, Li-Ming Zhao, Wei-Long Zheng, Bao-Liang Lu:
EEG-Eye Movements Cross-Modal Decision Confidence Measurement with Generative Adversarial Networks. NER 2023: 1-4 - [c193]Yu-Ting Lan, Ze-Chen Li, Dan Peng, Wei-Long Zheng, Bao-Liang Lu:
Identifying Artistic Expertise Difference in Emotion Recognition in Response to Oil Paintings. NER 2023: 1-4 - [i18]Yu-Ting Lan, Kan Ren, Yansen Wang, Wei-Long Zheng, Dongsheng Li, Bao-Liang Lu, Lili Qiu:
Seeing through the Brain: Image Reconstruction of Visual Perception from Human Brain Signals. CoRR abs/2308.02510 (2023) - 2022
- [j66]Yixin Wang, Shuang Qiu, Dan Li, Changde Du, Bao-Liang Lu, Huiguang He:
Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition. IEEE CAA J. Autom. Sinica 9(9): 1612-1626 (2022) - [j65]Fangyao Shen, Yong Peng, Guojun Dai, Bao-Liang Lu, Wanzeng Kong:
Coupled Projection Transfer Metric Learning for Cross-Session Emotion Recognition from EEG. Syst. 10(2): 47 (2022) - [j64]Yong Peng, Wenjuan Wang, Wanzeng Kong, Feiping Nie, Bao-Liang Lu, Andrzej Cichocki:
Joint Feature Adaptation and Graph Adaptive Label Propagation for Cross-Subject Emotion Recognition From EEG Signals. IEEE Trans. Affect. Comput. 13(4): 1941-1958 (2022) - [j63]Shu Jiang, Zuchao Li, Hai Zhao, Bao-Liang Lu, Rui Wang:
Tri-training for Dependency Parsing Domain Adaptation. ACM Trans. Asian Low Resour. Lang. Inf. Process. 21(3): 48:1-48:17 (2022) - [j62]Dongrui Wu, Yifan Xu, Bao-Liang Lu:
Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016. IEEE Trans. Cogn. Dev. Syst. 14(1): 4-19 (2022) - [j61]Wei Liu, Jie-Lin Qiu, Wei-Long Zheng, Bao-Liang Lu:
Comparing Recognition Performance and Robustness of Multimodal Deep Learning Models for Multimodal Emotion Recognition. IEEE Trans. Cogn. Dev. Syst. 14(2): 715-729 (2022) - [j60]Xing Li, Fangyao Shen, Yong Peng, Wanzeng Kong, Bao-Liang Lu:
Efficient Sample and Feature Importance Mining in Semi-Supervised EEG Emotion Recognition. IEEE Trans. Circuits Syst. II Express Briefs 69(7): 3349-3353 (2022) - [j59]Wei Wu, Wei Sun, Q. M. Jonathan Wu, Yimin Yang, Hui Zhang, Wei-Long Zheng, Bao-Liang Lu:
Multimodal Vigilance Estimation Using Deep Learning. IEEE Trans. Cybern. 52(5): 3097-3110 (2022) - [j58]Yong Peng, Yikai Zhang, Wanzeng Kong, Feiping Nie, Bao-Liang Lu, Andrzej Cichocki:
S3LRR: A Unified Model for Joint Discriminative Subspace Identification and Semisupervised EEG Emotion Recognition. IEEE Trans. Instrum. Meas. 71: 1-13 (2022) - [j57]Yikai Zhang, Ruiqi Guo, Yong Peng, Wanzeng Kong, Feiping Nie, Bao-Liang Lu:
An Auto-Weighting Incremental Random Vector Functional Link Network for EEG-Based Driving Fatigue Detection. IEEE Trans. Instrum. Meas. 71: 1-14 (2022) - [c192]Cheng Fei, Rui Li, Li-Ming Zhao, Ziyi Li, Bao-Liang Lu:
A Cross-modality Deep Learning Method for Measuring Decision Confidence from Eye Movement Signals. EMBC 2022: 3342-3345 - [c191]Shuai Luo, Yu-Ting Lan, Dan Peng, Ziyi Li, Wei-Long Zheng, Bao-Liang Lu:
Multimodal Emotion Recognition in Response to Oil Paintings. EMBC 2022: 4167-4170 - [c190]Ziyi Li, Luyu Liu, Yihui Zhu, Bao-Liang Lu:
Exploring Sex Differences in Key Frequency Bands and Channel Connections for EEG-based Emotion Recognition. EMBC 2022: 4793-4796 - [c189]Rui Li, Yiting Wang, Bao-Liang Lu:
Measuring Decision Confidence Levels from EEG Using a Spectral-Spatial-Temporal Adaptive Graph Convolutional Neural Network. ICONIP (5) 2022: 395-406 - [c188]Tian-Fang Ma, Wei-Long Zheng, Bao-Liang Lu:
Few-Shot Class-Incremental Learning for EEG-Based Emotion Recognition. ICONIP (5) 2022: 445-455 - [c187]Yan-Kai Liu, Wei-Bang Jiang, Bao-Liang Lu:
Increasing the Stability of EEG-based Emotion Recognition with a Variant of Neural Processes. IJCNN 2022: 1-6 - [c186]Rui Li, Yiting Wang, Wei-Long Zheng, Bao-Liang Lu:
A Multi-view Spectral-Spatial-Temporal Masked Autoencoder for Decoding Emotions with Self-supervised Learning. ACM Multimedia 2022: 6-14 - 2021
- [j56]Shu Jiang, Zhuosheng Zhang, Hai Zhao, Jiangtong Li, Yang Yang, Bao-Liang Lu, Ning Xia:
When SMILES Smiles, Practicality Judgment and Yield Prediction of Chemical Reaction via Deep Chemical Language Processing. IEEE Access 9: 85071-85083 (2021) - [j55]Shu Jiang, Rui Wang, Zuchao Li, Masao Utiyama, Kehai Chen, Eiichiro Sumita, Hai Zhao, Bao-Liang Lu:
Document-Level Neural Machine Translation with Associated Memory Network. IEICE Trans. Inf. Syst. 104-D(10): 1712-1723 (2021) - [j54]Wei Wu, Q. M. Jonathan Wu, Wei Sun, Yimin Yang, Xiaofang Yuan, Wei-Long Zheng, Bao-Liang Lu:
A Regression Method With Subnetwork Neurons for Vigilance Estimation Using EOG and EEG. IEEE Trans. Cogn. Dev. Syst. 13(1): 209-222 (2021) - [j53]Wei Wu, Wei Sun, Q. M. Jonathan Wu, Cheng Zhang, Yimin Yang, Hongshan Yu, Bao-Liang Lu:
Faster Single Model Vigilance Detection Based on Deep Learning. IEEE Trans. Cogn. Dev. Syst. 13(3): 621-630 (2021) - [j52]Yong Peng, Wanzeng Kong, Feiwei Qin, Feiping Nie, Jinglong Fang, Bao-Liang Lu, Andrzej Cichocki:
Self-Weighted Semi-Supervised Classification for Joint EEG-Based Emotion Recognition and Affective Activation Patterns Mining. IEEE Trans. Instrum. Meas. 70: 1-11 (2021) - [c185]Li-Ming Zhao, Xu Yan, Bao-Liang Lu:
Plug-and-Play Domain Adaptation for Cross-Subject EEG-based Emotion Recognition. AAAI 2021: 863-870 - [c184]Wei-Bang Jiang, Li-Ming Zhao, Ping Guo, Bao-Liang Lu:
Discriminating Surprise and Anger from EEG and Eye Movements with a Graph Network. BIBM 2021: 1353-1357 - [c183]Yun Luo, Bao-Liang Lu:
Wasserstein-Distance-Based Multi-Source Adversarial Domain Adaptation for Emotion Recognition and Vigilance Estimation. BIBM 2021: 1424-1428 - [c182]Yiting Wang, Wei-Bang Jiang, Rui Li, Bao-Liang Lu:
Emotion Transformer Fusion: Complementary Representation Properties of EEG and Eye Movements on Recognizing Anger and Surprise. BIBM 2021: 1575-1578 - [c181]Hao-Yi Hu, Li-Ming Zhao, Yu-Zhong Liu, Hua-Liang Li, Bao-Liang Lu:
A Novel Experiment Setting for Cross-subject Emotion Recognition. EMBC 2021: 6416-6419 - [c180]Rui-Xiao Ma, Xu Yan, Yu-Zhong Liu, Hua-Liang Li, Bao-Liang Lu:
Sex Difference in Emotion Recognition under Sleep Deprivation: Evidence from EEG and Eye-tracking. EMBC 2021: 6449-6452 - [c179]Jian-Ming Zhang, Xu Yan, Zi-Yi Li, Li-Ming Zhao, Yu-Zhong Liu, Hua-Liang Li, Bao-Liang Lu:
A Cross-subject and Cross-modal Model for Multimodal Emotion Recognition. ICONIP (6) 2021: 203-211 - [c178]Le-Dian Liu, Rui Li, Yu-Zhong Liu, Hua-Liang Li, Bao-Liang Lu:
EEG-Based Human Decision Confidence Measurement Using Graph Neural Networks. ICONIP (6) 2021: 291-298 - [c177]Xu Yan, Li-Ming Zhao, Bao-Liang Lu:
Simplifying Multimodal Emotion Recognition with Single Eye Movement Modality. ACM Multimedia 2021: 1057-1063 - [c176]Rui Li, Yiting Wang, Bao-Liang Lu:
A Multi-Domain Adaptive Graph Convolutional Network for EEG-based Emotion Recognition. ACM Multimedia 2021: 5565-5573 - [c175]Zhi-Wei Zhao, Wei Liu, Bao-Liang Lu:
Multimodal Emotion Recognition Using a Modified Dense Co-Attention Symmetric Network. NER 2021: 73-76 - [c174]Rui Li, Le-Dian Liu, Bao-Liang Lu:
Measuring Human Decision Confidence from EEG Signals in an Object Detection Task. NER 2021: 942-945 - [c173]Rui Li, Le-Dian Liu, Bao-Liang Lu:
Discrimination of Decision Confidence Levels from EEG Signals. NER 2021: 946-949 - 2020
- [j51]Yingying Jiao, Yini Deng, Yun Luo, Bao-Liang Lu:
Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks. Neurocomputing 408: 100-111 (2020) - [j50]Wei-Long Zheng, Kunpeng Gao, Gang Li, Wei Liu, Chao Liu, Jing-Quan Liu, Guoxing Wang, Bao-Liang Lu:
Vigilance Estimation Using a Wearable EOG Device in Real Driving Environment. IEEE Trans. Intell. Transp. Syst. 21(1): 170-184 (2020) - [c172]Chen-Li Yao, Bao-Liang Lu:
A Robust Approach to Estimating Vigilance from EEG with Neural Processes. BIBM 2020: 1202-1205 - [c171]Wenrui Mu, Bao-Liang Lu:
Examining Four Experimental Paradigms for EEG-Based Sleep Quality Evaluation with Domain Adaptation. EMBC 2020: 5913-5916 - [c170]Yong Peng, Qingxi Li, Wanzeng Kong, Jianhai Zhang, Bao-Liang Lu, Andrzej Cichocki:
Joint Semi-Supervised Feature Auto-Weighting and Classification Model for EEG-Based Cross-Subject Sleep Quality Evaluation. ICASSP 2020: 946-950 - [c169]Yu-Ting Lan, Wei Liu, Bao-Liang Lu:
Multimodal Emotion Recognition Using Deep Generalized Canonical Correlation Analysis with an Attention Mechanism. IJCNN 2020: 1-6 - [c168]Le-Yan Tao, Bao-Liang Lu:
Emotion Recognition under Sleep Deprivation Using a Multimodal Residual LSTM Network. IJCNN 2020: 1-8 - [c167]Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, Hao Su:
Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous GNNs. NeurIPS 2020 - [i17]Xun Wu, Wei-Long Zheng, Bao-Liang Lu:
Investigating EEG-Based Functional Connectivity Patterns for Multimodal Emotion Recognition. CoRR abs/2004.01973 (2020) - [i16]Dongrui Wu, Yifan Xu, Bao-Liang Lu:
Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progresses Since 2016. CoRR abs/2004.06286 (2020) - [i15]Yun Luo, Li-Zhen Zhu, Zi-Yu Wan, Bao-Liang Lu:
Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep Generative Models. CoRR abs/2006.05331 (2020) - [i14]Shu Jiang, Hai Zhao, Zuchao Li, Bao-Liang Lu:
Document-level Neural Machine Translation with Document Embeddings. CoRR abs/2009.08775 (2020) - [i13]Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, Hao Su:
Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous Graph Neural Networks. CoRR abs/2010.13547 (2020)
2010 – 2019
- 2019
- [j49]Huangfei Jiang, Xiya Guan, Wei-Ye Zhao, Li-Ming Zhao, Bao-Liang Lu:
Generating Multimodal Features for Emotion Classification from Eye Movement Signals. Aust. J. Intell. Inf. Process. Syst. 15(3): 59-66 (2019) - [j48]Wei-Long Zheng, Jia-Yi Zhu, Bao-Liang Lu:
Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 10(3): 417-429 (2019) - [j47]Wei-Long Zheng, Wei Liu, Yifei Lu, Bao-Liang Lu, Andrzej Cichocki:
EmotionMeter: A Multimodal Framework for Recognizing Human Emotions. IEEE Trans. Cybern. 49(3): 1110-1122 (2019) - [c166]Jiang-Jian Guo, Rong Zhou, Li-Ming Zhao, Bao-Liang Lu:
Multimodal Emotion Recognition from Eye Image, Eye Movement and EEG Using Deep Neural Networks. EMBC 2019: 3071-3074 - [c165]Lan-Qing Bao, Jie-Lin Qiu, Hao Tang, Wei-Long Zheng, Bao-Liang Lu:
Investigating Sex Differences in Classification of Five Emotions from EEG and Eye Movement Signals. EMBC 2019: 6746-6749 - [c164]Bo-Qun Ma, He Li, Wei-Long Zheng, Bao-Liang Lu:
Reducing the Subject Variability of EEG Signals with Adversarial Domain Generalization. ICONIP (1) 2019: 30-42 - [c163]Lu Gan, Wei Liu, Yun Luo, Xun Wu, Bao-Liang Lu:
A Cross-Culture Study on Multimodal Emotion Recognition Using Deep Learning. ICONIP (4) 2019: 670-680 - [c162]Bo-Qun Ma, He Li, Yun Luo, Bao-Liang Lu:
Depersonalized Cross-Subject Vigilance Estimation with Adversarial Domain Generalization. IJCNN 2019: 1-8 - [c161]Yun Luo, Li-Zhen Zhu, Bao-Liang Lu:
A GAN-Based Data Augmentation Method for Multimodal Emotion Recognition. ISNN (1) 2019: 141-150 - [c160]Jia-Xin Ma, Hao Tang, Wei-Long Zheng, Bao-Liang Lu:
Emotion Recognition using Multimodal Residual LSTM Network. ACM Multimedia 2019: 176-183 - [c159]Xun Wu, Wei-Long Zheng, Bao-Liang Lu:
Identifying Functional Brain Connectivity Patterns for EEG-Based Emotion Recognition. NER 2019: 235-238 - [c158]Tian-Hao Li, Wei Liu, Wei-Long Zheng, Bao-Liang Lu:
Classification of Five Emotions from EEG and Eye Movement Signals: Discrimination Ability and Stability over Time. NER 2019: 607-610 - [c157]Li-Ming Zhao, Rui Li, Wei-Long Zheng, Bao-Liang Lu:
Classification of Five Emotions from EEG and Eye Movement Signals: Complementary Representation Properties. NER 2019: 611-614 - [i12]Shu Jiang, Zhuosheng Zhang, Hai Zhao, Jiangtong Li, Yang Yang, Bao-Liang Lu, Ning Xia:
Judging Chemical Reaction Practicality From Positive Sample only Learning. CoRR abs/1904.09824 (2019) - [i11]Wei Liu, Jie-Lin Qiu, Wei-Long Zheng, Bao-Liang Lu:
Multimodal Emotion Recognition Using Deep Canonical Correlation Analysis. CoRR abs/1908.05349 (2019) - [i10]Shu Jiang, Rui Wang, Zuchao Li, Masao Utiyama, Kehai Chen, Eiichiro Sumita, Hai Zhao, Bao-Liang Lu:
Document-level Neural Machine Translation with Inter-Sentence Attention. CoRR abs/1910.14528 (2019) - 2018
- [j46]Rui Wang, Hai Zhao, Sabine Ploux, Bao-Liang Lu, Masao Utiyama, Eiichiro Sumita:
Graph-Based Bilingual Word Embedding for Statistical Machine Translation. ACM Trans. Asian Low Resour. Lang. Inf. Process. 17(4): 31:1-31:23 (2018) - [j45]Yimin Yang, Q. M. Jonathan Wu, Wei-Long Zheng, Bao-Liang Lu:
EEG-Based Emotion Recognition Using Hierarchical Network With Subnetwork Nodes. IEEE Trans. Cogn. Dev. Syst. 10(2): 408-419 (2018) - [c156]Jie-Lin Qiu, Wei Liu, Bao-Liang Lu:
Multi-view Emotion Recognition Using Deep Canonical Correlation Analysis. ICONIP (5) 2018: 221-231 - [c155]Yun Luo, Si-Yang Zhang, Wei-Long Zheng, Bao-Liang Lu:
WGAN Domain Adaptation for EEG-Based Emotion Recognition. ICONIP (5) 2018: 275-286 - [c154]Li-Ming Zhao, Xin-Wei Li, Wei-Long Zheng, Bao-Liang Lu:
Active Feedback Framework with Scan-Path Clustering for Deep Affective Models. ICONIP (2) 2018: 330-340 - [c153]He Li, Yi-Ming Jin, Wei-Long Zheng, Bao-Liang Lu:
Cross-Subject Emotion Recognition Using Deep Adaptation Networks. ICONIP (5) 2018: 403-413 - [c152]Yini Deng, Yingying Jiao, Bao-Liang Lu:
Driver Sleepiness Detection Using LSTM Neural Network. ICONIP (4) 2018: 622-633 - [c151]He Li, Wei-Long Zheng, Bao-Liang Lu:
Multimodal Vigilance Estimation with Adversarial Domain Adaptation Networks. IJCNN 2018: 1-6 - [c150]Jia-Jun Tong, Yun Luo, Bo-Qun Ma, Wei-Long Zheng, Bao-Liang Lu, Xiao-Qi Song, Shi-Wei Ma:
Sleep Quality Estimation with Adversarial Domain Adaptation: From Laboratory to Real Scenario. IJCNN 2018: 1-8 - [c149]Changde Du, Changying Du, Hao Wang, Jinpeng Li, Wei-Long Zheng, Bao-Liang Lu, Huiguang He:
Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data. ACM Multimedia 2018: 108-116 - [i9]Changde Du, Changying Du, Hao Wang, Jinpeng Li, Wei-Long Zheng, Bao-Liang Lu, Huiguang He:
Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data. CoRR abs/1808.02096 (2018) - 2017
- [j44]Yong Peng, Bao-Liang Lu:
Discriminative extreme learning machine with supervised sparsity preserving for image classification. Neurocomputing 261: 242-252 (2017) - [j43]Kai-Ming Jiang, Ya-Jing Chen, Jin-Xiong Lv, Bao-Liang Lu, Lei Xu:
Bootstrapping integrative hypothesis test for identifying biomarkers that differentiates lung cancer and chronic obstructive pulmonary disease. Neurocomputing 269: 40-46 (2017) - [j42]Yong Peng, Bao-Liang Lu:
Robust structured sparse representation via half-quadratic optimization for face recognition. Multim. Tools Appl. 76(6): 8859-8880 (2017) - [j41]Wei-Long Zheng, Shan-Chun Shen, Bao-Liang Lu:
Online Depth Image-Based Object Tracking with Sparse Representation and Object Detection. Neural Process. Lett. 45(3): 745-758 (2017) - [c148]Yingying Jiao, Bao-Liang Lu:
Detecting driver sleepiness from EEG alpha wave during daytime driving. BIBM 2017: 728-731 - [c147]Xue Yan, Wei-Long Zheng, Wei Liu, Bao-Liang Lu:
Identifying Gender Differences in Multimodal Emotion Recognition Using Bimodal Deep AutoEncoder. ICONIP (4) 2017: 533-542 - [c146]Xing-Zan Zhang, Wei-Long Zheng, Bao-Liang Lu:
EEG-Based Sleep Quality Evaluation with Deep Transfer Learning. ICONIP (4) 2017: 543-552 - [c145]Wei-Ye Zhao, Sheng Fang, Ting Ji, Qian Ji, Wei-Long Zheng, Bao-Liang Lu:
Emotion Annotation Using Hierarchical Aligned Cluster Analysis. ICONIP (4) 2017: 572-580 - [c144]Hao Tang, Wei Liu, Wei-Long Zheng, Bao-Liang Lu:
Multimodal Emotion Recognition Using Deep Neural Networks. ICONIP (4) 2017: 811-819 - [c143]Xue Yan, Wei-Long Zheng, Wei Liu, Bao-Liang Lu:
Investigating Gender Differences of Brain Areas in Emotion Recognition Using LSTM Neural Network. ICONIP (4) 2017: 820-829 - [c142]Yingying Jiao, Bao-Liang Lu:
An alpha wave pattern from attenuation to disappearance for predicting the entry into sleep during simulated driving. NER 2017: 21-24 - [c141]Li-Huan Du, Wei Liu, Wei-Long Zheng, Bao-Liang Lu:
Detecting driving fatigue with multimodal deep learning. NER 2017: 74-77 - [c140]Zhen-Feng Shi, Chang Zhou, Wei-Long Zheng, Bao-Liang Lu:
Attention evaluation with eye tracking glasses for EEG-based emotion recognition. NER 2017: 86-89 - [c139]Si-Yuan Wu, Moritz Schaefer, Wei-Long Zheng, Bao-Liang Lu, Hiroshi Yokoi:
Neural patterns between Chinese and Germans for EEG-based emotion recognition. NER 2017: 94-97 - [i8]Changde Du, Changying Du, Jinpeng Li, Wei-Long Zheng, Bao-Liang Lu, Huiguang He:
Semi-supervised Bayesian Deep Multi-modal Emotion Recognition. CoRR abs/1704.07548 (2017) - 2016
- [j40]Yong Peng, Wei-Long Zheng, Bao-Liang Lu:
An unsupervised discriminative extreme learning machine and its applications to data clustering. Neurocomputing 174: 250-264 (2016) - [j39]Yong Peng, Bao-Liang Lu:
Discriminative manifold extreme learning machine and applications to image and EEG signal classification. Neurocomputing 174: 265-277 (2016) - [j38]Rui Wang, Masao Utiyama, Isao Goto, Eiichiro Sumita, Hai Zhao, Bao-Liang Lu:
Converting Continuous-Space Language Models into N-gram Language Models with Efficient Bilingual Pruning for Statistical Machine Translation. ACM Trans. Asian Low Resour. Lang. Inf. Process. 15(3): 11:1-11:26 (2016) - [c138]Jincheng Mei, Hao Zhang, Bao-Liang Lu:
On the Reducibility of Submodular Functions. AISTATS 2016: 186-194 - [c137]Rui Wang, Hai Zhao, Bao-Liang Lu, Masao Utiyama, Eiichiro Sumita:
Connecting Phrase based Statistical Machine Translation Adaptation. COLING 2016: 3135-3145 - [c136]Yingying Jiao, Bao-Liang Lu:
Detecting slow eye movement for recognizing driver's sleep onset period with EEG features. EMBC 2016: 4658-4661 - [c135]Wei Liu, Wei-Long Zheng, Bao-Liang Lu:
Emotion Recognition Using Multimodal Deep Learning. ICONIP (2) 2016: 521-529 - [c134]Nan Zhang, Wei-Long Zheng, Wei Liu, Bao-Liang Lu:
Continuous Vigilance Estimation Using LSTM Neural Networks. ICONIP (2) 2016: 530-537 - [c133]Wei-Long Zheng, Bao-Liang Lu:
Personalizing EEG-Based Affective Models with Transfer Learning. IJCAI 2016: 2732-2739 - [c132]Rui Wang, Hai Zhao, Sabine Ploux, Bao-Liang Lu, Masao Utiyama:
A Bilingual Graph-Based Semantic Model for Statistical Machine Translation. IJCAI 2016: 2950-2956 - [c131]Xue-Qin Huo, Wei-Long Zheng, Bao-Liang Lu:
Driving fatigue detection with fusion of EEG and forehead EOG. IJCNN 2016: 897-904 - [c130]Li-Li Wang, Wei-Long Zheng, Hai-Wei Ma, Bao-Liang Lu:
Measuring sleep quality from EEG with machine learning approaches. IJCNN 2016: 905-912 - [i7]Jincheng Mei, Hao Zhang, Bao-Liang Lu:
On the Reducibility of Submodular Functions. CoRR abs/1601.00393 (2016) - [i6]Wei-Long Zheng, Jia-Yi Zhu, Bao-Liang Lu:
Identifying Stable Patterns over Time for Emotion Recognition from EEG. CoRR abs/1601.02197 (2016) - [i5]Wei Liu, Wei-Long Zheng, Bao-Liang Lu:
Multimodal Emotion Recognition Using Multimodal Deep Learning. CoRR abs/1602.08225 (2016) - [i4]Rui Wang, Hai Zhao, Sabine Ploux, Bao-Liang Lu, Masao Utiyama:
A Novel Bilingual Word Embedding Method for Lexical Translation Using Bilingual Sense Clique. CoRR abs/1607.08692 (2016) - [i3]Rui Wang, Hai Zhao, Bao-Liang Lu, Masao Utiyama, Eiichiro Sumita:
Connecting Phrase based Statistical Machine Translation Adaptation. CoRR abs/1607.08693 (2016) - [i2]Wei-Long Zheng, Bao-Liang Lu:
A Multimodal Approach to Estimating Vigilance Using EEG and Forehead EOG. CoRR abs/1611.08492 (2016) - 2015
- [j37]Yong Peng, Suhang Wang, Xianzhong Long, Bao-Liang Lu:
Discriminative graph regularized extreme learning machine and its application to face recognition. Neurocomputing 149: 340-353 (2015) - [j36]Yong Peng, Bao-Liang Lu:
Hybrid learning clonal selection algorithm. Inf. Sci. 296: 128-146 (2015) - [j35]Yong Peng, Bao-Liang Lu, Suhang Wang:
Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning. Neural Networks 65: 1-17 (2015) - [j34]Yong Peng, Xianzhong Long, Bao-Liang Lu:
Graph Based Semi-Supervised Learning via Structure Preserving Low-Rank Representation. Neural Process. Lett. 41(3): 389-406 (2015) - [j33]Wei-Long Zheng, Bao-Liang Lu:
Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 7(3): 162-175 (2015) - [j32]Rui Wang, Hai Zhao, Bao-Liang Lu, Masao Utiyama, Eiichiro Sumita:
Bilingual Continuous-Space Language Model Growing for Statistical Machine Translation. IEEE ACM Trans. Audio Speech Lang. Process. 23(7): 1209-1220 (2015) - [j31]Mu Li, Wei Bi, James T. Kwok, Bao-Liang Lu:
Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD. IEEE Trans. Neural Networks Learn. Syst. 26(1): 152-164 (2015) - [c129]Jincheng Mei, Kang Zhao, Bao-Liang Lu:
On Unconstrained Quasi-Submodular Function Optimization. AAAI 2015: 1191-1197 - [c128]Wei-Long Zheng, Yong-Qi Zhang, Jia-Yi Zhu, Bao-Liang Lu:
Transfer components between subjects for EEG-based emotion recognition. ACII 2015: 917-922 - [c127]Yong Peng, Bao-Liang Lu:
Robust group sparse representation via half-quadratic optimization for face recognition. CCECE 2015: 146-151 - [c126]Yangcheng He, Hongtao Lu, Bao-Liang Lu:
Graph regularized non-negative local coordinate factorization with pairwise constraints for image representation. ICME 2015: 1-6 - [c125]Li Wu, Kang Zhao, Hongtao Lu, Zhen Wei, Bao-Liang Lu:
Distance Preserving Marginal Hashing for image retrieval. ICME 2015: 1-6 - [c124]Yong-Qi Zhang, Wei-Long Zheng, Bao-Liang Lu:
Transfer Components Between Subjects for EEG-based Driving Fatigue Detection. ICONIP (4) 2015: 61-68 - [c123]Yang Cao, Bao-Liang Lu:
Intensity-Depth Face Alignment Using Cascade Shape Regression. ICONIP (4) 2015: 224-231 - [c122]Yifei Lu, Wei-Long Zheng, Binbin Li, Bao-Liang Lu:
Combining Eye Movements and EEG to Enhance Emotion Recognition. IJCAI 2015: 1170-1176 - [c121]Kai-Ming Jiang, Bao-Liang Lu, Lei Xu:
Bootstrapped Integrative Hypothesis Test, COPD-Lung Cancer Differentiation, and Joint miRNAs Biomarkers. IScIDE (2) 2015: 538-547 - [c120]Wei-Long Zheng, Hao-Tian Guo, Bao-Liang Lu:
Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network. NER 2015: 154-157 - [c119]Yu-Fei Zhang, Xiang-Yu Gao, Jia-Yi Zhu, Wei-Long Zheng, Bao-Liang Lu:
A novel approach to driving fatigue detection using forehead EOG. NER 2015: 707-710 - [c118]Xiang-Yu Gao, Yu-Fei Zhang, Wei-Long Zheng, Bao-Liang Lu:
Evaluating driving fatigue detection algorithms using eye tracking glasses. NER 2015: 767-770 - [c117]Rui Wang, Hai Zhao, Bao-Liang Lu:
English to Chinese Translation: How Chinese Character Matters. PACLIC 2015 - 2014
- [j30]Xiaolin Wang, Yangyang Chen, Hai Zhao, Bao-Liang Lu:
Parallelized extreme learning machine ensemble based on min-max modular network. Neurocomputing 128: 31-41 (2014) - [j29]Xiao-Wei Wang, Dan Nie, Bao-Liang Lu:
Emotional state classification from EEG data using machine learning approach. Neurocomputing 129: 94-106 (2014) - [j28]Jing-Nan Gu, Hong-Tao Lu, Bao-Liang Lu:
An integrated Gaussian mixture model to estimate vigilance level based on EEG recordings. Neurocomputing 129: 107-113 (2014) - [j27]Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
A Meta-Top-Down Method for Large-Scale Hierarchical Classification. IEEE Trans. Knowl. Data Eng. 26(3): 500-513 (2014) - [c116]Yong Peng, Jia-Yi Zhu, Wei-Long Zheng, Bao-Liang Lu:
EEG-based emotion recognition with manifold regularized extreme learning machine. EMBC 2014: 974-977 - [c115]Wei-Long Zheng, Bo-Nan Dong, Bao-Liang Lu:
Multimodal emotion recognition using EEG and eye tracking data. EMBC 2014: 5040-5043 - [c114]Rui Wang, Hai Zhao, Bao-Liang Lu, Masao Utiyama, Eiichiro Sumita:
Neural Network Based Bilingual Language Model Growing for Statistical Machine Translation. EMNLP 2014: 189-195 - [c113]Wei-Long Zheng, Jia-Yi Zhu, Bao-Liang Lu:
Multimodel emotion analysis in response to multimedia. ICME Workshops 2014: 1-2 - [c112]Wei-Long Zheng, Jia-Yi Zhu, Yong Peng, Bao-Liang Lu:
EEG-based emotion classification using deep belief networks. ICME 2014: 1-6 - [c111]Jincheng Mei, Bao-Liang Lu:
Saliency Level Set Evolution. ICONIP (2) 2014: 170-177 - [c110]Shan-Chun Shen, Wei-Long Zheng, Bao-Liang Lu:
Online Object Tracking Based on Depth Image with Sparse Coding. ICONIP (3) 2014: 234-241 - [c109]Xuemin Zhu, Wei-Long Zheng, Bao-Liang Lu, Xiaoping Chen, Shanguang Chen, Chunhui Wang:
EOG-based drowsiness detection using convolutional neural networks. IJCNN 2014: 128-134 - [c108]Jia-Yi Zhu, Wei-Long Zheng, Yong Peng, Ruo-Nan Duan, Bao-Liang Lu:
EEG-based emotion recognition using discriminative graph regularized extreme learning machine. IJCNN 2014: 525-532 - [c107]Yingying Jiao, Yong Peng, Bao-Liang Lu, Xiaoping Chen, Shanguang Chen, Chunhui Wang:
Recognizing slow eye movement for driver fatigue detection with machine learning approach. IJCNN 2014: 4035-4041 - [i1]Jincheng Mei, Kang Zhao, Bao-Liang Lu:
Unconstrained Quasi-Submodular Function Optimization. CoRR abs/1408.4389 (2014) - 2013
- [j26]Yong Peng, Bao-Liang Lu:
A hierarchical particle swarm optimizer with latin sampling based memetic algorithm for numerical optimization. Appl. Soft Comput. 13(5): 2823-2836 (2013) - [j25]Li-Chen Shi, Bao-Liang Lu:
EEG-based vigilance estimation using extreme learning machines. Neurocomputing 102: 135-143 (2013) - [c106]Hai Zhao, Masao Utiyama, Eiichiro Sumita, Bao-Liang Lu:
An Empirical Study on Word Segmentation for Chinese Machine Translation. CICLing (2) 2013: 248-263 - [c105]Li-Chen Shi, Ruo-Nan Duan, Bao-Liang Lu:
A robust principal component analysis algorithm for EEG-based vigilance estimation. EMBC 2013: 6623-6626 - [c104]Li-Chen Shi, Yingying Jiao, Bao-Liang Lu:
Differential entropy feature for EEG-based vigilance estimation. EMBC 2013: 6627-6630 - [c103]Rui Wang, Masao Utiyama, Isao Goto, Eiichiro Sumita, Hai Zhao, Bao-Liang Lu:
Converting Continuous-Space Language Models into N-Gram Language Models for Statistical Machine Translation. EMNLP 2013: 845-850 - [c102]Fan Li, Xiao-Wei Wang, Bao-Liang Lu:
Detection of Driving Fatigue Based on Grip Force on Steering Wheel with Wavelet Transformation and Support Vector Machine. ICONIP (3) 2013: 141-148 - [c101]Yong Peng, Suhang Wang, Shen Wang, Bao-Liang Lu:
Structure Preserving Low-Rank Representation for Semi-supervised Face Recognition. ICONIP (2) 2013: 148-155 - [c100]Yong Peng, Shen Wang, Bao-Liang Lu:
Marginalized Denoising Autoencoder via Graph Regularization for Domain Adaptation. ICONIP (2) 2013: 156-163 - [c99]Yang Cao, Bao-Liang Lu:
Real-Time Head Detection with Kinect for Driving Fatigue Detection. ICONIP (3) 2013: 600-607 - [c98]Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
Labeled Alignment for Recognizing Textual Entailment. IJCNLP 2013: 605-613 - [c97]Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
BCMI-NLP Labeled-Alignment-Based Entailment System for NTCIR-10 RITE-2 Task. NTCIR 2013 - 2012
- [j24]Yen-Wei Chen, Ikuko Nishikawa, Shinichi Tamura, Bao-Liang Lu, Huiyan Jiang:
Computational Intelligence in Biomedical Science and Engineering. Comput. Intell. Neurosci. 2012: 160356:1-160356:2 (2012) - [j23]Bing Li, Xiao-Chen Lian, Bao-Liang Lu:
Gender classification by combining clothing, hair and facial component classifiers. Neurocomputing 76(1): 18-27 (2012) - [j22]Tian-Xiang Wu, Xiao-Chen Lian, Bao-Liang Lu:
Multi-view gender classification using symmetry of facial images. Neural Comput. Appl. 21(4): 661-669 (2012) - [c96]Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
Automated quality assessment of web pages from textual content. ICMLC 2012: 2000-2006 - [c95]Ruofei Du, Ren-Jie Liu, Tian-Xiang Wu, Bao-Liang Lu:
Online Vigilance Analysis Combining Video and Electrooculography Features. ICONIP (5) 2012: 447-454 - [c94]Ruo-Nan Duan, Xiao-Wei Wang, Bao-Liang Lu:
EEG-Based Emotion Recognition in Listening Music by Using Support Vector Machine and Linear Dynamic System. ICONIP (4) 2012: 468-475 - [c93]Hui Sun, Bao-Liang Lu:
EEG-Based Fatigue Classification by Using Parallel Hidden Markov Model and Pattern Classifier Combination. ICONIP (4) 2012: 484-491 - [c92]Yangyang Chen, Bao-Liang Lu, Hai Zhao:
Parallel learning of large-scale multi-label classification problems with min-max modular LIBLINEAR. IJCNN 2012: 1-7 - [c91]Zheng-Ping Wei, Bao-Liang Lu:
Online vigilance analysis based on electrooculography. IJCNN 2012: 1-7 - [c90]Yong Peng, Bao-Liang Lu:
Immune clonal algorithm based feature selection for epileptic EEG signal classification. ISSPA 2012: 848-853 - [c89]Shaohua Yang, Hai Zhao, Xiaolin Wang, Bao-Liang Lu:
Spell Checking for Chinese. LREC 2012: 730-736 - [c88]Shaohua Yang, Hai Zhao, Bao-Liang Lu:
Towards a Semantic Annotation of English Television News - Building and Evaluating a Constraint Grammar FrameNet. PACLIC 2012: 333-342 - 2011
- [j21]Jian Zhang, Hai Zhao, Liqing Zhang, Bao-Liang Lu:
An Empirical Comparative Study on Two Large-Scale Hierarchical Text Classification Approaches. Int. J. Comput. Process. Orient. Lang. 23(4): 309-326 (2011) - [j20]Ji Zheng, Bao-Liang Lu:
A support vector machine classifier with automatic confidence and its application to gender classification. Neurocomputing 74(11): 1926-1935 (2011) - [j19]Wen-Yun Yang, Bao-Liang Lu, James T. Kwok:
Incorporating cellular sorting structure for better prediction of protein subcellular locations. J. Exp. Theor. Artif. Intell. 23(1): 79-95 (2011) - [c87]Bing Li, Rong Xiao, Zhiwei Li, Rui Cai, Bao-Liang Lu, Lei Zhang:
Rank-SIFT: Learning to rank repeatable local interest points. CVPR 2011: 1737-1744 - [c86]Mu Li, Xiao-Chen Lian, James T. Kwok, Bao-Liang Lu:
Time and space efficient spectral clustering via column sampling. CVPR 2011: 2297-2304 - [c85]Hao-Yu Cai, Jia-Xin Ma, Li-Chen Shi, Bao-Liang Lu:
A novel method for EOG features extraction from the forehead. EMBC 2011: 3075-3078 - [c84]Zhong-Lei Gu, Li-Chen Shi, Bao-Liang Lu:
Evidence of rapid gender processing revealed by ERSP. EMBC 2011: 7360-7363 - [c83]Jing-Nan Gu, Hong-Jun Liu, Hong-Tao Lu, Bao-Liang Lu:
An Integrated Hierarchical Gaussian Mixture Model to Estimate Vigilance Level Based on EEG Recordings. ICONIP (1) 2011: 380-387 - [c82]Jie Wu, Li-Chen Shi, Bao-Liang Lu:
Removing Unrelated Features Based on Linear Dynamical System for Motor-Imagery-Based Brain-Computer Interface. ICONIP (1) 2011: 709-716 - [c81]Li-Chen Shi, Yang Li, Rui-Hua Sun, Bao-Liang Lu:
A Sparse Common Spatial Pattern Algorithm for Brain-Computer Interface. ICONIP (1) 2011: 725-733 - [c80]Xiao-Wei Wang, Dan Nie, Bao-Liang Lu:
EEG-Based Emotion Recognition Using Frequency Domain Features and Support Vector Machines. ICONIP (1) 2011: 734-743 - [c79]Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
Enhance Top-down method with Meta-Classification for Very Large-scale Hierarchical Classification. IJCNLP 2011: 1089-1097 - [c78]Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
GeoTime Retrieval through Passage-based Learning to Rank. NTCIR 2011 - [c77]Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
Redundancy Removal to Selectively Diversify Information Retrieval Results. NTCIR 2011 - [e8]Bao-Liang Lu, Liqing Zhang, James T. Kwok:
Neural Information Processing - 18th International Conference, ICONIP 2011, Shanghai, China, November 13-17, 2011, Proceedings, Part I. Lecture Notes in Computer Science 7062, Springer 2011, ISBN 978-3-642-24954-9 [contents] - [e7]Bao-Liang Lu, Liqing Zhang, James T. Kwok:
Neural Information Processing - 18th International Conference, ICONIP 2011, Shanghai, China, November 13-17, 2011, Proceedings, Part II. Lecture Notes in Computer Science 7063, Springer 2011, ISBN 978-3-642-24957-0 [contents] - [e6]Bao-Liang Lu, Liqing Zhang, James T. Kwok:
Neural Information Processing - 18th International Conference, ICONIP 2011, Shanghai, China, November 13-17, 2011, Proceedings, Part III. Lecture Notes in Computer Science 7064, Springer 2011, ISBN 978-3-642-24964-8 [contents] - 2010
- [j18]Yang Yang, Bao-Liang Lu:
Protein Subcellular Multi-Localization Prediction Using a Min-Max Modular Support Vector Machine. Int. J. Neural Syst. 20(1): 13-28 (2010) - [j17]Wen Yu, Bao-Liang Lu:
Modeling and Adaptive Control with Fuzzy Neural Networks - Selected Papers from the 6th International Symposium on Neural Networks. Neurocomputing 73(13-15): 2430 (2010) - [j16]Hai Zhao, Changning Huang, Mu Li, Bao-Liang Lu:
A Unified Character-Based Tagging Framework for Chinese Word Segmentation. ACM Trans. Asian Lang. Inf. Process. 9(2): 5:1-5:32 (2010) - [c76]Xuezhe Ma, Xiaotian Zhang, Hai Zhao, Bao-Liang Lu:
Dependency Parser for Chinese Constituent Parsing. CIPS-SIGHAN 2010 - [c75]Shaodian Zhang, Hai Zhao, Guodong Zhou, Bao-Liang Lu:
Hedge Detection and Scope Finding by Sequence Labeling with Procedural Feature Selection. CoNLL Shared Task 2010: 92-99 - [c74]Mu Li, James T. Kwok, Bao-Liang Lu:
Online multiple instance learning with no regret. CVPR 2010: 1395-1401 - [c73]Xiao-Chen Lian, Zhiwei Li, Changhu Wang, Bao-Liang Lu, Lei Zhang:
Probabilistic models for supervised dictionary learning. CVPR 2010: 2305-2312 - [c72]Xiao-Chen Lian, Zhiwei Li, Bao-Liang Lu, Lei Zhang:
Max-Margin Dictionary Learning for Multiclass Image Categorization. ECCV (4) 2010: 157-170 - [c71]Xiaolin Wang, Bao-Liang Lu:
Flatten hierarchies for large-scale hierarchical text categorization. ICDIM 2010: 139-144 - [c70]Tianqi Zhang, Bao-Liang Lu:
Selecting Optimal Orientations of Gabor Wavelet Filters for Facial Image Analysis. ICISP 2010: 218-227 - [c69]Mu Li, James T. Kwok, Bao-Liang Lu:
Making Large-Scale Nyström Approximation Possible. ICML 2010: 631-638 - [c68]Jian Zhang, Hai Zhao, Bao-Liang Lu:
A comparative study on two large-scale hierarchical text classification tasks' solutions. ICMLC 2010: 3275-3280 - [c67]Yan-Ming Tang, Bao-Liang Lu:
Age Classification Combining Contour and Texture Feature. ICONIP (2) 2010: 493-500 - [c66]Qi Kong, Hai Zhao, Bao-Liang Lu:
Adaptive Ensemble Learning Strategy Using an Assistant Classifier for Large-Scale Imbalanced Patent Categorization. ICONIP (1) 2010: 601-608 - [c65]Tian-Xiang Wu, Bao-Liang Lu:
Multi-view Gender Classification Using Hierarchical Classifiers Structure. ICONIP (2) 2010: 625-632 - [c64]Minzhang Huang, Hai Zhao, Bao-Liang Lu:
Pruning Training Samples Using a Supervised Clustering Algorithm. ISNN (2) 2010: 250-257 - [c63]Gang Jin, Qi Kong, Jian Zhang, Xiaolin Wang, Cong Hui, Hai Zhao, Bao-Liang Lu:
Multiple Strategies for NTCIR-8 Patent Mining at BCMI. NTCIR 2010: 303-308 - [c62]Wen-Yun Yang, James T. Kwok, Bao-Liang Lu:
Spectral and Semidefinite Relaxation of the CLUHSIC Algorithm. SDM 2010: 106-117 - [c61]Cong Hui, Hai Zhao, Bao-Liang Lu, Yan Song:
An Empirical Study on Development Set Selection Strategy for Machine Translation Learning. WMT@ACL 2010: 67-71 - [e5]Liqing Zhang, Bao-Liang Lu, James Tin-Yau Kwok:
Advances in Neural Networks - ISNN 2010, 7th International Symposium on Neural Networks, ISNN 2010, Shanghai, China, June 6-9, 2010, Proceedings, Part I. Lecture Notes in Computer Science 6063, Springer 2010, ISBN 978-3-642-13277-3 [contents] - [e4]Liqing Zhang, Bao-Liang Lu, James Tin-Yau Kwok:
Advances in Neural Networks - ISNN 2010, 7th International Symposium on Neural Networks, ISNN 2010, Shanghai, China, June 6-9, 2010, Proceedings, Part II. Lecture Notes in Computer Science 6064, Springer 2010, ISBN 978-3-642-13317-6 [contents]
2000 – 2009
- 2009
- [j15]Dandan Song, Yang Yang, Bin Yu, Binglian Zheng, Zhidong Deng, Bao-Liang Lu, Xuemei Chen, Tao Jiang:
Computational prediction of novel non-coding RNAs in Arabidopsis thaliana. BMC Bioinform. 10(S-1) (2009) - [j14]Bao-Liang Lu, Xiaolin Wang, Masao Utiyama:
Incorporating prior knowledge into learning by dividing training data. Frontiers Comput. Sci. China 3(1): 109-122 (2009) - [j13]Yun Li, Bao-Liang Lu, Teng-Fei Zhang:
Combining Feature Selection with Extraction: Unsupervised Feature Selection Based on Principal Component Analysis. Int. J. Artif. Intell. Tools 18(6): 883-904 (2009) - [j12]Jing Li, Bao-Liang Lu:
An adaptive image Euclidean distance. Pattern Recognit. 42(3): 349-357 (2009) - [j11]Yun Li, Bao-Liang Lu:
Feature selection based on loss-margin of nearest neighbor classification. Pattern Recognit. 42(9): 1914-1921 (2009) - [c60]Zheng Ji, Bao-Liang Lu:
Gender Classification Based on Support Vector Machine with Automatic Confidence. ICONIP (1) 2009: 685-692 - [c59]Yue Wang, Bao-Liang Lu, Zhi-Fei Ye:
Module Combination based on Decision Tree in Min-max Modular Network. IJCCI 2009: 555-558 - [c58]Chao Ma, Bao-Liang Lu, Masao Utiyama:
Incorporating Prior Knowledge into Task Decomposition for Large-Scale Patent Classification. ISNN (2) 2009: 784-793 - [c57]Jia-Cheng Guo, Bao-Liang Lu, Zhiwei Li, Lei Zhang:
LogisticLDA: Regularizing Latent Dirichlet Allocation by Logistic Regression. PACLIC 2009: 160-169 - [c56]Weiming Liang, Changning Huang, Mu Li, Bao-Liang Lu:
Extracting Keyphrases from Chinese News Articles Using TextRank and Query Log Knowledge. PACLIC 2009: 733-740 - 2008
- [j10]Ke Wu, Bao-Liang Lu, Masao Utiyama, Hitoshi Isahara:
An empirical comparison of min-max-modular k -NN with different voting methods to large-scale text categorization. Soft Comput. 12(7): 647-655 (2008) - [c55]Ke Wu, Bao-Liang Lu:
A Refinement Framework for Cross Language Text Categorization. AIRS 2008: 401-411 - [c54]Wen-Yun Yang, Bao-Liang Lu:
String Kernels with Feature Selection for SVM Protein Classification. APBC 2008: 9-18 - [c53]Yuan-Peng Li, Bao-Liang Lu:
Semantic Similarity Definition over Gene Ontology by Further Mining of the Information Content. APBC 2008: 155-164 - [c52]Yang Yang, Bao-Liang Lu, Wen-Yun Yang:
Classification of Protein Sequences Based on Word Segmentation Methods. APBC 2008: 177-186 - [c51]Xiao-Chen Lian, Bao-Liang Lu:
Gender Classification by Combining Facial and Hair Information. ICONIP (2) 2008: 647-654 - [c50]Ke Wu, Xiaolin Wang, Bao-Liang Lu:
Cross Language Text Categorization Using a Bilingual Lexicon. IJCNLP 2008: 165-172 - [c49]Bin Xia, He Sun, Bao-Liang Lu:
Multi-view gender classification based on local Gabor binary mapping pattern and support vector machines. IJCNN 2008: 3388-3395 - [c48]Xiao-Lei Chu, Chao Ma, Jing Li, Bao-Liang Lu, Masao Utiyama, Hitoshi Isahara:
Large-scale patent classification with min-max modular support vector machines. IJCNN 2008: 3973-3980 - [c47]Jia-Wei Fu, Mu Li, Bao-Liang Lu:
Detecting Drowsiness in Driving Simulation Based on EEG. SJTU-TUB Joint Workshop 2008: 21-28 - [c46]Zhi-Fei Ye, Bao-Liang Lu, Cong Hui:
Patent Classification Using Parallel Min-Max Modular Support Vector Machine. SJTU-TUB Joint Workshop 2008: 157-167 - 2007
- [j9]Hui-Cheng Lian, Bao-Liang Lu:
Multi-View Gender Classification Using Multi-Resolution Local Binary Patterns and Support Vector Machines. Int. J. Neural Syst. 17(6): 479-487 (2007) - [j8]Yun Li, Bao-Liang Lu, Zhong-Fu Wu:
Hierarchical fuzzy filter method for unsupervised feature selection. J. Intell. Fuzzy Syst. 18(2): 157-169 (2007) - [c45]Jun Luo, Yong Ma, Erina Takikawa, Shihong Lao, Masato Kawade, Bao-Liang Lu:
Person-Specific SIFT Features for Face Recognition. ICASSP (2) 2007: 593-596 - [c44]Yang Yang, Bao-Liang Lu:
Incorporating Domain Knowledge into a Min-Max Modular Support Vector Machine for Protein Subcellular Localization. ICONIP (2) 2007: 827-836 - [c43]Jing Li, Bao-Liang Lu:
A Framework for Multi-view Gender Classification. ICONIP (1) 2007: 973-982 - [c42]Feng Zhou, Bao-Liang Lu:
Learning Concepts from Large-Scale Data Sets by Pairwise Coupling with Probabilistic Outputs. IJCNN 2007: 524-529 - [c41]Li-Chen Shi, Hong Yu, Bao-Liang Lu:
Semi-Supervised Clustering for Vigilance Analysis Based on EEG. IJCNN 2007: 1518-1523 - [c40]Zhi-Fei Ye, Bao-Liang Lu:
Learning Imbalanced Data Sets with a Min-Max Modular Support Vector Machine. IJCNN 2007: 1673-1678 - [c39]Yimin Wen, Bao-Liang Lu:
A Confident Majority Voting Strategy for Parallel and Modular Support Vector Machines. ISNN (3) 2007: 525-534 - [c38]Ke Wu, Bao-Liang Lu, Masao Uchiyama, Hitoshi Isahara:
A Probabilistic Approach to Feature Selection for Multi-class Text Categorization. ISNN (1) 2007: 1310-1317 - [c37]Yimin Wen, Bao-Liang Lu:
Incremental Learning of Support Vector Machines by Classifier Combining. PAKDD 2007: 904-911 - [c36]Ke Wu, Bao-Liang Lu:
Cross-Lingual Document Clustering. PAKDD 2007: 956-963 - [c35]Yun Li, Bao-Liang Lu:
Feature Selection for Identifying Critical Variables of Principal Components Based on K-Nearest Neighbor Rule. VISUAL 2007: 193-204 - [p1]Bao-Liang Lu, Jing Li:
A Min-Max Modular Network with Gaussian-Zero-Crossing Function. Trends in Neural Computation 2007: 285-313 - 2006
- [c34]Wen-Yun Yang, Bao-Liang Lu, Yang Yang:
A Comparative Study on Feature Extraction from Protein Sequences for Subcellular Localization Prediction. CIBCB 2006: 1-8 - [c33]Zhi-Gang Fan, Bao-Liang Lu:
Fast Learning for Statistical Face Detection. ICONIP (2) 2006: 187-196 - [c32]Yun Li, Bao-Liang Lu, Zhong-Fu Wu:
A Hybrid Method of Unsupervised Feature Selection Based on Ranking. ICPR (2) 2006: 687-690 - [c31]Jing Li, Bao-Liang Lu:
A New Supervised Clustering Algorithm Based on Min-Max Modular Network with Gaussian-Zero-Crossing Functions. IJCNN 2006: 786-793 - [c30]Ken Chen, Bao-Liang Lu, James T. Kwok:
Efficient Classification of Multi-label and Imbalanced Data using Min-Max Modular Classifiers. IJCNN 2006: 1770-1775 - [c29]Hui-Cheng Lian, Bao-Liang Lu:
Multi-view Gender Classification Using Local Binary Patterns and Support Vector Machines. ISNN (2) 2006: 202-209 - [c28]Jun Luo, Bao-Liang Lu:
Gender Recognition Using a Min-Max Modular Support Vector Machine with Equal Clustering. ISNN (2) 2006: 210-215 - [c27]Hai Zhao, Bao-Liang Lu:
A Modular Reduction Method for k-NN Algorithm with Self-recombination Learning. ISNN (1) 2006: 537-544 - [c26]Yang Yang, Bao-Liang Lu:
Prediction of Protein Subcellular Multi-locations with a Min-Max Modular Support Vector Machine. ISNN (2) 2006: 667-673 - [c25]Hai Zhao, Changning Huang, Mu Li, Bao-Liang Lu:
Effective Tag Set Selection in Chinese Word Segmentation via Conditional Random Field Modeling. PACLIC 2006 - [e3]Jun Wang, Zhang Yi, Jacek M. Zurada, Bao-Liang Lu, Hujun Yin:
Advances in Neural Networks - ISNN 2006, Third International Symposium on Neural Networks, Chengdu, China, May 28 - June 1, 2006, Proceedings, Part I. Lecture Notes in Computer Science 3971, Springer 2006, ISBN 3-540-34439-X [contents] - [e2]Jun Wang, Zhang Yi, Jacek M. Zurada, Bao-Liang Lu, Hujun Yin:
Advances in Neural Networks - ISNN 2006, Third International Symposium on Neural Networks, Chengdu, China, May 28 - June 1, 2006, Proceedings, Part II. Lecture Notes in Computer Science 3972, Springer 2006, ISBN 3-540-34437-3 [contents] - [e1]Jun Wang, Zhang Yi, Jacek M. Zurada, Bao-Liang Lu, Hujun Yin:
Advances in Neural Networks - ISNN 2006, Third International Symposium on Neural Networks, Chengdu, China, May 28 - June 1, 2006, Proceedings, Part III. Lecture Notes in Computer Science 3973, Springer 2006, ISBN 3-540-34482-9 [contents] - 2005
- [c24]Yang Yang, Bao-Liang Lu:
Extracting Features from Protein Sequences Using Chinese Segmentation Techniques for Subcellular Localization. CIBCB 2005: 288-295 - [c23]Zhi-Gang Fan, Bao-Liang Lu:
Fast Recognition of Multi-View Faces with Feature Selection. ICCV 2005: 76-81 - [c22]Jing Li, Bao-Liang Lu, Michinori Ichikawa:
An Algorithm for Pruning Redundant Modules in Min-Max Modular Network with GZC Function. ICNC (1) 2005: 293-302 - [c21]Hai Zhao, Bao-Liang Lu:
A General Procedure for Combining Binary Classifiers and Its Performance Analysis. ICNC (1) 2005: 303-312 - [c20]Zhi-Gang Fan, Bao-Liang Lu:
Multi-view Face Recognition with Min-Max Modular SVMs. ICNC (2) 2005: 396-399 - [c19]Hui-Cheng Lian, Bao-Liang Lu, Erina Takikawa, Satoshi Hosoi:
Gender Recognition Using a Min-Max Modular Support Vector Machine. ICNC (2) 2005: 438-441 - [c18]Hai Zhao, Bao-Liang Lu:
Improvement on Response Performance of Min-Max Modular Classifier by Symmetric Module Selection. ISNN (2) 2005: 39-44 - [c17]Jing Li, Bao-Liang Lu, Michinori Ichikawa:
Typical Sample Selection and Redundancy Reduction for Min-Max Modular Network with GZC Function. ISNN (1) 2005: 467-472 - [c16]Yang Yang, Bao-Liang Lu:
Structure Pruning Strategies for Min-Max Modular Network. ISNN (1) 2005: 646-651 - [c15]Yimin Wen, Bao-Liang Lu:
A Hierarchical and Parallel Method for Training Support Vector Machines. ISNN (1) 2005: 881-886 - [c14]Kaian Wang, Hai Zhao, Bao-Liang Lu:
Task Decomposition Using Geometric Relation for Min-Max Modular SVMs. ISNN (1) 2005: 887-892 - 2004
- [j7]Bao-Liang Lu, Jonghan Shin, Michinori Ichikawa:
Massively parallel classification of single-trial EEG signals using a min-max Modular neural network. IEEE Trans. Biomed. Eng. 51(3): 551-558 (2004) - [c13]Hai Zhao, Bao-Liang Lu:
A Modular k-Nearest Neighbor Classification Method for Massively Parallel Text Categorization. CIS 2004: 867-872 - [c12]Bin Huang, Bao-Liang Lu:
Fault Diagnosis for Industrial Images Using a Min-Max Modular Neural Network. ICONIP 2004: 842-847 - [c11]Zhi-Gang Fan, Kaian Wang, Bao-Liang Lu:
Feature Selection for Fast Image Classification with Support Vector Machines. ICONIP 2004: 1026-1031 - [c10]Yimin Wen, Bao-Liang Lu:
A Cascade Method for Reducing Training Time and the Number of Support Vectors. ISNN (1) 2004: 480-486 - [c9]Zhi-Gang Fan, Bao-Liang Lu:
An Adjusted Gaussian Skin-Color Model Based on Principal Component Analysis. ISNN (1) 2004: 804-809 - [c8]Hai Zhao, Bao-Liang Lu:
Analysis of Fault Tolerance of a Combining Classifier. ISNN (1) 2004: 888-893 - 2003
- [j6]Bao-Liang Lu, Qing Ma, Michinori Ichikawa, Hitoshi Isahara:
Efficient Part-of-Speech Tagging with a Min-Max Modular Neural-Network Model. Appl. Intell. 19(1-2): 65-81 (2003) - [j5]Bao-Liang Lu, Koji Ito:
Converting general nonlinear programming problems into separable programming problems with feedforward neural networks. Neural Networks 16(7): 1059-1074 (2003) - 2002
- [j4]Qing Ma, Bao-Liang Lu, Hitoshi Isahara, Michinori Ichikawa:
Part of speech tagging with min-max modular neural networks. Syst. Comput. Jpn. 33(7): 30-39 (2002) - 2001
- [j3]Jonghan Shin, Bao-Liang Lu, Arkadi Talnov, Gen Matsumoto, Jurij Brankack:
Reading auditory discrimination behaviour of freely moving rats from hippocampal EEG. Neurocomputing 38-40: 1557-1566 (2001) - [c7]Bao-Liang Lu, Jonghan Shin, Michinori Ichikawa:
Massively Parallel Classification of EEG Signals Using Min-Max Modular Neural Networks. ICANN 2001: 601-608 - [c6]Qing Ma, Bao-Liang Lu, Masaki Murata, Michinori Ichikawa, Hitoshi Isahara:
On-Line Error Detection of Annotated Corpus Using Modular Neural Networks. ICANN 2001: 1185-1192 - 2000
- [c5]Bao-Liang Lu, Michinori Ichikawa:
Emergence of Learning: An Approach to Coping with NP-Complete Problems in Learning. IJCNN (4) 2000: 159-164
1990 – 1999
- 1999
- [j2]Bao-Liang Lu, Masami Ito:
Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Trans. Neural Networks 10(5): 1244-1256 (1999) - [j1]Bao-Liang Lu, Hajime Kita, Yoshikazu Nishikawa:
Inverting feedforward neural networks using linear and nonlinear programming. IEEE Trans. Neural Networks 10(6): 1271-1290 (1999) - 1998
- [c4]Bao-Liang Lu, Masami Ito:
Decomposition and Parallel Learning of Imbalanced Classification Problems by Min-Max Modular Neural Network. ICONIP 1998: 199-202 - [c3]Bao-Liang Lu, Masami Ito:
Decomposing and Parallel Learning of Large-Scale Pattern Recognition Problems using Min-Max Modular Neural Network. NC 1998: 703-709 - 1997
- [c2]Bao-Liang Lu, Masami Ito:
Task Decomposition Based on Class Relations: A Modular Neural Network Architecture for Pattern Classification. IWANN 1997: 330-339 - 1995
- [c1]Bao-Liang Lu, Koji Ito:
Regularization of inverse kinematics for redundant manipulators using neural network inversions. ICNN 1995: 2726-2731
Coauthor Index
aka: James Tin-Yau Kwok
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-04 20:16 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint