default search action
Pablo Samuel Castro
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j8]Johan Samir Obando-Ceron, João Guilherme Madeira Araújo, Aaron C. Courville, Pablo Samuel Castro:
On the consistency of hyper-parameter selection in value-based deep reinforcement learning. RLJ 3: 1037-1059 (2024) - [j7]Timon Willi, Johan Samir Obando-Ceron, Jakob Nicolaus Foerster, Gintare Karolina Dziugaite, Pablo Samuel Castro:
Mixture of Experts in a Mixture of RL settings. RLJ 3: 1072-1105 (2024) - [j6]Vincent Dumoulin, Daniel D. Johnson, Pablo Samuel Castro, Hugo Larochelle, Yann N. Dauphin:
A density estimation perspective on learning from pairwise human preferences. Trans. Mach. Learn. Res. 2024 (2024) - [c37]Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, Rishabh Agarwal:
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL. ICML 2024 - [c36]Johan Samir Obando-Ceron, Aaron C. Courville, Pablo Samuel Castro:
In value-based deep reinforcement learning, a pruned network is a good network. ICML 2024 - [c35]Johan Samir Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Nicolaus Foerster, Gintare Karolina Dziugaite, Doina Precup, Pablo Samuel Castro:
Mixtures of Experts Unlock Parameter Scaling for Deep RL. ICML 2024 - [c34]Yusong Wu, Tim Cooijmans, Kyle Kastner, Adam Roberts, Ian Simon, Alexander Scarlatos, Chris Donahue, Cassie Tarakajian, Shayegan Omidshafiei, Aaron C. Courville, Pablo Samuel Castro, Natasha Jaques, Cheng-Zhi Anna Huang:
Adaptive Accompaniment with ReaLchords. ICML 2024 - [i41]Johan S. Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob N. Foerster, Gintare Karolina Dziugaite, Doina Precup, Pablo Samuel Castro:
Mixtures of Experts Unlock Parameter Scaling for Deep RL. CoRR abs/2402.08609 (2024) - [i40]Johan S. Obando-Ceron, Aaron C. Courville, Pablo Samuel Castro:
In deep reinforcement learning, a pruned network is a good network. CoRR abs/2402.12479 (2024) - [i39]Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, Rishabh Agarwal:
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL. CoRR abs/2403.03950 (2024) - [i38]Johan S. Obando-Ceron, João G. M. Araújo, Aaron C. Courville, Pablo Samuel Castro:
On the consistency of hyper-parameter selection in value-based deep reinforcement learning. CoRR abs/2406.17523 (2024) - [i37]Timon Willi, Johan S. Obando-Ceron, Jakob N. Foerster, Karolina Dziugaite, Pablo Samuel Castro:
Mixture of Experts in a Mixture of RL settings. CoRR abs/2406.18420 (2024) - [i36]Eduardo Pignatelli, Jarek Liesen, Robert Tjarko Lange, Chris Lu, Pablo Samuel Castro, Laura Toni:
NAVIX: Scaling MiniGrid Environments with JAX. CoRR abs/2407.19396 (2024) - [i35]Ghada Sokar, Johan S. Obando-Ceron, Aaron C. Courville, Hugo Larochelle, Pablo Samuel Castro:
Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL. CoRR abs/2410.01930 (2024) - [i34]Jesse Farebrother, Pablo Samuel Castro:
CALE: Continuous Arcade Learning Environment. CoRR abs/2410.23810 (2024) - 2023
- [j5]Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, Mark Rowland:
A Kernel Perspective on Behavioural Metrics for Markov Decision Processes. Trans. Mach. Learn. Res. 2023 (2023) - [c33]Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel Castro, Marc G. Bellemare:
Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks. ICLR 2023 - [c32]Johan Samir Obando-Ceron, Marc G. Bellemare, Pablo Samuel Castro:
The Small Batch Size Anomaly in Multistep Deep Reinforcement Learning. Tiny Papers @ ICLR 2023 - [c31]Max Schwarzer, Johan Samir Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh Agarwal, Pablo Samuel Castro:
Bigger, Better, Faster: Human-level Atari with human-level efficiency. ICML 2023: 30365-30380 - [c30]Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, Utku Evci:
The Dormant Neuron Phenomenon in Deep Reinforcement Learning. ICML 2023: 32145-32168 - [c29]Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, Jordan K. Terry:
Minigrid & Miniworld: Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks. NeurIPS 2023 - [c28]Johan S. Obando-Ceron, Marc G. Bellemare, Pablo Samuel Castro:
Small batch deep reinforcement learning. NeurIPS 2023 - [c27]Laixi Shi, Robert Dadashi, Yuejie Chi, Pablo Samuel Castro, Matthieu Geist:
Offline Reinforcement Learning with On-Policy Q-Function Regularization. ECML/PKDD (4) 2023: 455-471 - [i33]Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, Utku Evci:
The Dormant Neuron Phenomenon in Deep Reinforcement Learning. CoRR abs/2302.12902 (2023) - [i32]Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel Castro, Marc G. Bellemare:
Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks. CoRR abs/2304.12567 (2023) - [i31]Joo Hyung Lee, Wonpyo Park, Nicole Mitchell, Jonathan Pilault, Johan S. Obando-Ceron, Han-Byul Kim, Namhoon Lee, Elias Frantar, Yun Long, Amir Yazdanbakhsh, Shivani Agrawal, Suvinay Subramanian, Xin Wang, Sheng-Chun Kao, Xingyao Zhang, Trevor Gale, Aart Bik, Woohyun Han, Milen Ferev, Zhonglin Han, Hong-Seok Kim, Yann N. Dauphin, Karolina Dziugaite, Pablo Samuel Castro, Utku Evci:
JaxPruner: A concise library for sparsity research. CoRR abs/2304.14082 (2023) - [i30]Max Schwarzer, Johan S. Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh Agarwal, Pablo Samuel Castro:
Bigger, Better, Faster: Human-level Atari with human-level efficiency. CoRR abs/2305.19452 (2023) - [i29]Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, Jordan K. Terry:
Minigrid & Miniworld: Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks. CoRR abs/2306.13831 (2023) - [i28]Laixi Shi, Robert Dadashi, Yuejie Chi, Pablo Samuel Castro, Matthieu Geist:
Offline Reinforcement Learning with On-Policy Q-Function Regularization. CoRR abs/2307.13824 (2023) - [i27]Johan S. Obando-Ceron, Marc G. Bellemare, Pablo Samuel Castro:
Small batch deep reinforcement learning. CoRR abs/2310.03882 (2023) - [i26]Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, Mark Rowland:
A Kernel Perspective on Behavioural Metrics for Markov Decision Processes. CoRR abs/2310.19804 (2023) - [i25]Vincent Dumoulin, Daniel D. Johnson, Pablo Samuel Castro, Hugo Larochelle, Yann N. Dauphin:
A density estimation perspective on learning from pairwise human preferences. CoRR abs/2311.14115 (2023) - [i24]Max Schwarzer, Jesse Farebrother, Joshua Greaves, Ekin Dogus Cubuk, Rishabh Agarwal, Aaron C. Courville, Marc G. Bellemare, Sergei V. Kalinin, Igor Mordatch, Pablo Samuel Castro, Kevin M. Roccapriore:
Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy. CoRR abs/2311.17894 (2023) - 2022
- [c26]Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist, Marlos C. Machado, Pablo Samuel Castro, Nicolas Le Roux:
A general class of surrogate functions for stable and efficient reinforcement learning. AISTATS 2022: 8619-8649 - [c25]Laura Graesser, Utku Evci, Erich Elsen, Pablo Samuel Castro:
The State of Sparse Training in Deep Reinforcement Learning. ICML 2022: 7766-7792 - [c24]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress. NeurIPS 2022 - [i23]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Beyond Tabula Rasa: Reincarnating Reinforcement Learning. CoRR abs/2206.01626 (2022) - [i22]Laura Graesser, Utku Evci, Erich Elsen, Pablo Samuel Castro:
The State of Sparse Training in Deep Reinforcement Learning. CoRR abs/2206.10369 (2022) - 2021
- [c23]Charline Le Lan, Marc G. Bellemare, Pablo Samuel Castro:
Metrics and Continuity in Reinforcement Learning. AAAI 2021: 8261-8269 - [c22]Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, Marc G. Bellemare:
Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning. ICLR 2021 - [c21]Johan Samir Obando-Ceron, Pablo Samuel Castro:
Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. ICML 2021: 1373-1383 - [c20]Georg Ostrovski, Pablo Samuel Castro, Will Dabney:
The Difficulty of Passive Learning in Deep Reinforcement Learning. NeurIPS 2021: 23283-23295 - [c19]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Deep Reinforcement Learning at the Edge of the Statistical Precipice. NeurIPS 2021: 29304-29320 - [c18]Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, Mark Rowland:
MICo: Improved representations via sampling-based state similarity for Markov decision processes. NeurIPS 2021: 30113-30126 - [i21]Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, Marc G. Bellemare:
Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning. CoRR abs/2101.05265 (2021) - [i20]Charline Le Lan, Marc G. Bellemare, Pablo Samuel Castro:
Metrics and continuity in reinforcement learning. CoRR abs/2102.01514 (2021) - [i19]Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, Mark Rowland:
MICo: Learning improved representations via sampling-based state similarity for Markov decision processes. CoRR abs/2106.08229 (2021) - [i18]Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Mueller, Matthieu Geist, Marlos C. Machado, Pablo Samuel Castro, Nicolas Le Roux:
A functional mirror ascent view of policy gradient methods with function approximation. CoRR abs/2108.05828 (2021) - [i17]Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, Marc G. Bellemare:
Deep Reinforcement Learning at the Edge of the Statistical Precipice. CoRR abs/2108.13264 (2021) - [i16]Georg Ostrovski, Pablo Samuel Castro, Will Dabney:
The Difficulty of Passive Learning in Deep Reinforcement Learning. CoRR abs/2110.14020 (2021) - [i15]Pablo Samuel Castro:
Losses, Dissonances, and Distortions. CoRR abs/2111.05128 (2021) - 2020
- [j4]Marc G. Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C. Machado, Subhodeep Moitra, Sameera S. Ponda, Ziyu Wang:
Autonomous navigation of stratospheric balloons using reinforcement learning. Nat. 588(7836): 77-82 (2020) - [c17]Pablo Samuel Castro:
Scalable Methods for Computing State Similarity in Deterministic Markov Decision Processes. AAAI 2020: 10069-10076 - [c16]Kory Wallace Mathewson, Pablo Samuel Castro, Colin Cherry, George F. Foster, Marc G. Bellemare:
Shaping the Narrative Arc: Information-Theoretic Collaborative DialoguePaper type: Technical Paper. ICCC 2020: 9-16 - [c15]Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, Erich Elsen:
Rigging the Lottery: Making All Tickets Winners. ICML 2020: 2943-2952 - [i14]Pablo Samuel Castro:
GANterpretations. CoRR abs/2011.05158 (2020) - [i13]Johan S. Obando-Ceron, Pablo Samuel Castro:
Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. CoRR abs/2011.14826 (2020)
2010 – 2019
- 2019
- [c14]Clare Lyle, Marc G. Bellemare, Pablo Samuel Castro:
A Comparative Analysis of Expected and Distributional Reinforcement Learning. AAAI 2019: 4504-4511 - [c13]Marc G. Bellemare, Nicolas Le Roux, Pablo Samuel Castro, Subhodeep Moitra:
Distributional reinforcement learning with linear function approximation. AISTATS 2019: 2203-2211 - [c12]Pablo Samuel Castro:
Performing Structured Improvisations with Pre-trained Deep Learning Models. ICCC 2019: 306-310 - [c11]Felipe Petroski Such, Vashisht Madhavan, Rosanne Liu, Rui Wang, Pablo Samuel Castro, Yulun Li, Jiale Zhi, Ludwig Schubert, Marc G. Bellemare, Jeff Clune, Joel Lehman:
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents. IJCAI 2019: 3260-3267 - [c10]Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taïga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle:
A Geometric Perspective on Optimal Representations for Reinforcement Learning. NeurIPS 2019: 4360-4371 - [i12]Clare Lyle, Pablo Samuel Castro, Marc G. Bellemare:
A Comparative Analysis of Expected and Distributional Reinforcement Learning. CoRR abs/1901.11084 (2019) - [i11]Kory W. Mathewson, Pablo Samuel Castro, Colin Cherry, George F. Foster, Marc G. Bellemare:
Shaping the Narrative Arc: An Information-Theoretic Approach to Collaborative Dialogue. CoRR abs/1901.11528 (2019) - [i10]Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taïga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle:
A Geometric Perspective on Optimal Representations for Reinforcement Learning. CoRR abs/1901.11530 (2019) - [i9]Marc G. Bellemare, Nicolas Le Roux, Pablo Samuel Castro, Subhodeep Moitra:
Distributional reinforcement learning with linear function approximation. CoRR abs/1902.03149 (2019) - [i8]Pablo Samuel Castro:
Performing Structured Improvisations with pre-trained Deep Learning Models. CoRR abs/1904.13285 (2019) - [i7]Pablo Samuel Castro, Shijian Li, Daqing Zhang:
Inverse Reinforcement Learning with Multiple Ranked Experts. CoRR abs/1907.13411 (2019) - [i6]Pablo Samuel Castro:
Scalable methods for computing state similarity in deterministic Markov Decision Processes. CoRR abs/1911.09291 (2019) - [i5]Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, Erich Elsen:
Rigging the Lottery: Making All Tickets Winners. CoRR abs/1911.11134 (2019) - 2018
- [i4]Pablo Samuel Castro, Maria Attarian:
Combining Learned Lyrical Structures and Vocabulary for Improved Lyric Generation. CoRR abs/1811.04651 (2018) - [i3]Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, Marc G. Bellemare:
Dopamine: A Research Framework for Deep Reinforcement Learning. CoRR abs/1812.06110 (2018) - [i2]Felipe Petroski Such, Vashisht Madhavan, Rosanne Liu, Rui Wang, Pablo Samuel Castro, Yulun Li, Ludwig Schubert, Marc G. Bellemare, Jeff Clune, Joel Lehman:
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents. CoRR abs/1812.07069 (2018) - 2013
- [j3]Pablo Samuel Castro, Daqing Zhang, Chao Chen, Shijian Li, Gang Pan:
From taxi GPS traces to social and community dynamics: A survey. ACM Comput. Surv. 46(2): 17:1-17:34 (2013) - [j2]Lin Sun, Daqing Zhang, Chao Chen, Pablo Samuel Castro, Shijian Li, Zonghui Wang:
Real Time Anomalous Trajectory Detection and Analysis. Mob. Networks Appl. 18(3): 341-356 (2013) - [j1]Chao Chen, Daqing Zhang, Pablo Samuel Castro, Nan Li, Lin Sun, Shijian Li, Zonghui Wang:
iBOAT: Isolation-Based Online Anomalous Trajectory Detection. IEEE Trans. Intell. Transp. Syst. 14(2): 806-818 (2013) - 2012
- [c9]Pablo Samuel Castro, Daqing Zhang, Shijian Li:
Urban Traffic Modelling and Prediction Using Large Scale Taxi GPS Traces. Pervasive 2012: 57-72 - [i1]Norman Ferns, Pablo Samuel Castro, Doina Precup, Prakash Panangaden:
Methods for computing state similarity in Markov Decision Processes. CoRR abs/1206.6836 (2012) - 2011
- [c8]Pablo Samuel Castro, Doina Precup:
Automatic Construction of Temporally Extended Actions for MDPs Using Bisimulation Metrics. EWRL 2011: 140-152 - [c7]Chao Chen, Daqing Zhang, Pablo Samuel Castro, Nan Li, Lin Sun, Shijian Li:
Real-Time Detection of Anomalous Taxi Trajectories from GPS Traces. MobiQuitous 2011: 63-74 - 2010
- [c6]Pablo Samuel Castro, Doina Precup:
Using Bisimulation for Policy Transfer in MDPs. AAAI 2010: 1065-1070 - [c5]Pablo Samuel Castro, Doina Precup:
Using bisimulation for policy transfer in MDPs. AAMAS 2010: 1399-1400 - [c4]Pablo Samuel Castro, Doina Precup:
Smarter Sampling in Model-Based Bayesian Reinforcement Learning. ECML/PKDD (1) 2010: 200-214
2000 – 2009
- 2009
- [c3]Pablo Samuel Castro, Prakash Panangaden, Doina Precup:
Equivalence Relations in Fully and Partially Observable Markov Decision Processes. IJCAI 2009: 1653-1658 - 2007
- [c2]Pablo Samuel Castro, Doina Precup:
Using Linear Programming for Bayesian Exploration in Markov Decision Processes. IJCAI 2007: 2437-2442 - 2006
- [c1]Norm Ferns, Pablo Samuel Castro, Doina Precup, Prakash Panangaden:
Methods for Computing State Similarity in Markov Decision Processes. UAI 2006
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:17 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint