default search action
Masahiro Shimizu
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c48]Masahiro Shimizu, Hiroaki Kikuchi:
A Poisoning-Resilient LDP Schema Leveraging Oblivious Transfer with the Hadamard Transform. MDAI 2024: 211-223 - 2023
- [c47]Yuto Horioka, Masahiro Shimizu, Takuya Umedachi:
A Crawling Robot That Utilizes Propagation of Deformation Waves of a Bistable Lattice Actuated by a Single Motor. RoboSoft 2023: 1-7 - [c46]Atsushi Kaneko, Dai Owaki, Masahiro Shimizu, Takuya Umedachi:
One-Piece 3D-Printed Legs Using Compliant Mechanisms That Produce Effective Propulsive Force for Hexapod Robot Locomotion. RoboSoft 2023: 1-7 - 2022
- [j14]Takuya Umedachi, Masahiro Shimizu:
Toward Self-Modifying Bio-Soft Robots. J. Robotics Mechatronics 34(2): 219-222 (2022) - [j13]Kazuya Furusawa, Ryo Teramae, Hirono Ohashi, Masahiro Shimizu:
Development of Living "Bio-Robots" for Autonomous Actuations. J. Robotics Mechatronics 34(2): 279-284 (2022) - [j12]Satoshi Iyobe, Masahiro Shimizu, Takuya Umedachi:
Diverse Behaviors of a Single-Motor-Driven Soft-Bodied Robot Utilizing the Resonant Vibration of 2D Repetitive Slit Patterns. IEEE Robotics Autom. Lett. 7(2): 992-999 (2022) - [j11]Kisuke Nonoyama, Masahiro Shimizu, Takuya Umedachi:
Upside-Down Brachiation Robot Using Elastic Energy Stored Through Soft Body Deformation. IEEE Robotics Autom. Lett. 7(4): 11291-11297 (2022) - [c45]Atsushi Kaneko, Masahiro Shimizu, Takuya Umedachi:
Conversion of Elastic Energy Stored in the Legs of a Hexapod Robot into Propulsive Force. Living Machines 2022: 91-102 - [c44]Kohei Hanaoka, Masahiro Shimizu, Shunsuke Shigaki, Takuya Umedachi:
Measuring Motion of Deformed Surfaces for Soft-bodied Robots/Animals with Multi-colored Markers. RoboSoft 2022: 873-880 - 2021
- [j10]Ryota Yanagisawa, Shunsuke Shigaki, Kotaro Yasui, Dai Owaki, Yasuhiro Sugimoto, Akio Ishiguro, Masahiro Shimizu:
Wearable Vibration Sensor for Measuring the Wing Flapping of Insects. Sensors 21(2): 593 (2021) - [c43]Kohei Hanaoka, Masahiro Shimizu, Takuya Umedachi:
Development of 3D Printed Structure that Visualizes Bending and Compression Deformations for Soft-bodied Robots. RoboSoft 2021: 155-162 - [c42]Masahiro Shimizu, Tatsuo Nakajima:
Swaying Locomotion: A VR-based Locomotion System through Head Movements. VRST 2021: 97:1-97:2 - 2020
- [j9]Devwrat Omkar Joshi, Masahiro Shimizu, Koh Hosoda:
Intra-swarm migration of size-variable robotic modules utilizing the Brazil nut effect. Adv. Robotics 34(17): 1122-1136 (2020) - [c41]Masahiro Shimizu, Toshinori Fujie, Takuya Umedachi, Shunsuke Shigaki, Hiroki Kawashima, Masato Saito, Hirono Ohashi, Koh Hosoda:
Self-healing Cell Tactile Sensor Fabricated Using Ultraflexible Printed Electrodes. IROS 2020: 8932-8938 - [c40]Shunsuke Shigaki, Masahiro Shimizu, Hiroki Kobayashi, Risa Ishiguro, Takuya Umedachi, Koh Hosoda:
Demonstration of Teleoperated Bumblebee-Quadcopter System for Collision Avoidance. RoboSoft 2020: 188-193 - [c39]Naoki Yamada, Shunsuke Shigaki, Masahiro Shimizu, Hirono Ohashi, Takuya Umedachi, Toshihiko Ogura, Koh Hosoda:
Electroantennography Measurement by Printed Electronics Electrode. SII 2020: 844-847
2010 – 2019
- 2019
- [j8]Masahiro Shimizu, Kosuke Minzan, Hiroki Kawashima, Kota Miyasaka, Takuya Umedachi, Toshihiko Ogura, Junichi Nakai, Masamichi Ohkura, Koh Hosoda:
Self-organizing cell tactile perception which depends on mechanical stimulus history. Adv. Robotics 33(5): 232-242 (2019) - [j7]Takuya Umedachi, Masahiro Shimizu, Yoshihiro Kawahara:
Caterpillar-Inspired Crawling Robot Using Both Compression and Bending Deformations. IEEE Robotics Autom. Lett. 4(2): 670-676 (2019) - [c38]Devwrat Omkar Joshi, Masahiro Shimizu, Koh Hosoda:
Segregation and Flow of Modules in a Robot Swarm Utilising the Brazil Nut Effect. IROS 2019: 4080-4085 - [c37]Naoki Yamada, Masahiro Shimizu, Takuya Umedachi, Toshihiro Ogura, Koh Hosoda:
Evaluation of 3D-Bioprinted Materials and Culture Methods Toward Actuator Driven by Skeletal Muscle Cells. Living Machines 2019: 374-377 - [c36]Masahiro Shimizu, Hiroki Kawashima, Takuya Umedachi, Shunsuke Shigaki, Toshihiko Ogura, Koh Hosoda:
Cell Culturing on Electrical Circuit with Printed Electronics Technics. MHS 2019: 1-3 - [c35]Ojiro Matsumoto, Shunsuke Shigaki, Shuhei Ikemoto, Tsungyuan Chen, Masahiro Shimizu, Koh Hosoda:
2DOF link mechanism mimicking cheetah's spine and leg movement. ROBIO 2019: 120-125 - [c34]Takuya Umedachi, Masahiro Shimizu, Yoshihiro Kawahara:
Actuation Frequency-dependent Automatic Behavioral Switching on Caterpillar-inspired Crawling Robot. RoboSoft 2019: 167-171 - 2018
- [c33]Masahiro Shimizu, Koki Maekawa, Kanta Kitaiwa, Koh Hosoda:
Micro-robot Driven by Cardiac Cells That Cooperatively Beating. CBS 2018: 97-100 - [c32]Ryusuke Fuse, Masahiro Shimizu, Shuhei Ikemoto, Koh Hosoda:
Modular Robot that Modeled Cell Membrane Dynamics of a Cellular Slime Mold. IAS 2018: 302-313 - [c31]Hiroki Kawashima, Umakshi Sajnani, Masahiro Shimizu, Koh Hosoda:
Observation of Calcium Wave on Physical Stimulus for Realizing Cell Tactile Sensor. Living Machines 2018: 255-262 - 2017
- [c30]Masahiro Shimizu, Daisuke Ishii, Hitoshi Aonuma, Koh Hosoda:
Swimming frog cyborg which generates efficient hydrodynamic propulsion with webbed foot. CBS 2017: 73-76 - [c29]Ippei Tashiro, Masahiro Shimizu, Koh Hosoda:
Cell Patterning Method by Vibratory Stimuli. Living Machines 2017: 626-630 - [c28]Daisuke Ishii, Masahiro Shimizu, Hitoshi Asanuma, Koh Hosoda:
Implementation of long lifetime dissected-muscle actuator for frog cyborg. ROBIO 2017: 13-18 - [e1]Weidong Chen, Koh Hosoda, Emanuele Menegatti, Masahiro Shimizu, Hesheng Wang:
Intelligent Autonomous Systems 14 - Proceedings of the 14th International Conference IAS-14, Shanghai Jiao Tong University, Shanghai, China, July 3-7, 2016. Advances in Intelligent Systems and Computing 531, 2017, ISBN 978-3-319-48035-0 [contents] - 2016
- [c27]Koki Maekawa, Naoki Inoue, Masahiro Shimizu, Yoshihiro Isobe, Taro Saku, Koh Hosoda:
Mutual Entrainment of Cardiac-Oscillators Through Mechanical Interaction. Living Machines 2016: 467-471 - [c26]Keiji Seki, Masahiro Shimizu, Kota Miyasaka, Toshihiko Ogura, Koh Hosoda:
Aligning collagen fibers by cyclic mechanical stretch for efficiently muscle cell actuator. ROBIO 2016: 1197-1202 - 2015
- [c25]Ryo Sakai, Masahiro Shimizu, Hitoshi Aonuma, Koh Hosoda:
Visualizing Wakes in Swimming Locomotion of Xenopus-Noid by Using PIV. Living Machines 2015: 97-100 - [c24]Kazuaki Mori, Masahiro Shimizu, Kota Miyasaka, Toshihiko Ogura, Koh Hosoda:
Remodeling Muscle Cells by Inducing Mechanical Stimulus. Living Machines 2015: 227-230 - 2014
- [c23]Xiangxiao Liu, Andre Rosendo, Masahiro Shimizu, Koh Hosoda:
Improving hopping stability of a biped by muscular stretch reflex. Humanoids 2014: 658-663 - [c22]Naoki Inoue, Masahiro Shimizu, Koh Hosoda:
Self-organization of a Joint of Cardiomyocyte-Driven Robot. Living Machines 2014: 402-404 - [c21]Andre Rosendo, Xiangxiao Liu, Shogo Nakatsu, Masahiro Shimizu, Koh Hosoda:
A Combined CPG-Stretch Reflex Study on a Musculoskeletal Pneumatic Quadruped. Living Machines 2014: 417-419 - [c20]Ryo Sakai, Masahiro Shimizu, Hitoshi Aonuma, Koh Hosoda:
Swimming Locomotion of Xenopus Laevis Robot. Living Machines 2014: 420-422 - [c19]Andre Rosendo, Shogo Nakatsu, Xiangxiao Liu, Masahiro Shimizu, Koh Hosoda:
Quadrupedal locomotion based on a muscular activation pattern with stretch-reflex. ROBIO 2014: 773-778 - [c18]Shogo Nakatsu, Andre Rosendo, Masahiro Shimizu, Koh Hosoda:
Realization of three-dimensional walking of a cheetah-modeled bio-inspired quadruped robot. ROBIO 2014: 779-784 - 2013
- [c17]Shuhei Ikemoto, Yosuke Inoue, Masahiro Shimizu, Koh Hosoda:
Minimalistic decentralized control using stochastic resonance inspired from a skeletal muscle. IROS 2013: 343-348 - [c16]Kosuke Minzan, Masahiro Shimizu, Kota Miyasaka, Toshihiko Ogura, Junichi Nakai, Masamichi Ohkura, Koh Hosoda:
Toward Living Tactile Sensors. Living Machines 2013: 409-411 - 2012
- [c15]Masahiro Shimizu, Keiko Suzuki, Kenichi Narioka, Koh Hosoda:
Roll motion control by stretch reflex in a continuously jumping musculoskeletal biped robot. IROS 2012: 1264-1269 - [c14]Masahiro Shimizu, Shintaro Yawata, Kota Miyasaka, Koichiro Miyamoto, Toshifumi Asano, Tatsuo Yoshinobu, Hiromu Yawo, Toshihiko Ogura, Akio Ishiguro:
Biorobotic Actuator with a Muscle Tissue Driven by a Photostimulation. Living Machines 2012: 394-395 - 2010
- [j6]Masahiro Shimizu, Akio Ishiguro:
Amoeboid Locomotion Having High Fluidity by a Modular Robot. Int. J. Unconv. Comput. 6(2): 145-161 (2010)
2000 – 2009
- 2009
- [c13]Masahiro Shimizu, Kenji Suzuki:
A self-repairing structure for modules and its control by vibrating actuation mechanisms. ICRA 2009: 4281-4286 - [c12]Masahiro Shimizu, Akio Ishiguro:
An amoeboid modular robot that exhibits real-time adaptive reconfiguration. IROS 2009: 1496-1501 - [c11]Kazuya Suzuki, Tsunamichi Tsukidate, Masahiro Shimizu, Akio Ishiguro:
Stable and spontaneous self-assembly of a multi-robotic system by exploiting physical interaction between agents. IROS 2009: 4343-4348 - 2008
- [j5]Masahiro Shimizu, Takuma Kato, Max Lungarella, Akio Ishiguro:
Adaptive Modular Robots Through Heterogeneous Inter-Module Connections. J. Robotics Mechatronics 20(3): 386-393 (2008) - [c10]Masahiro Shimizu, Takuma Kato, Max Lungarella, Akio Ishiguro:
Adaptive reconfiguration of a modular robot through heterogeneous inter-module connections. ICRA 2008: 3527-3532 - [c9]Kazuya Suzuki, Tsunamichi Tsukidate, Takeshi Nakada, Masahiro Shimizu, Akio Ishiguro:
Self-assembly through the local interaction between "embodied" nonlinear oscillators with simple motile function. IROS 2008: 1319-1324 - 2007
- [j4]Hideaki Kurata, Satoshi Noda, Yoshitaka Sasago, Kazuo Otsuga, Tsuyoshi Arigane, Tetsufumi Kawamura, Takashi Kobayashi, Hitoshi Kume, Kazuki Homma, Teruhiko Ito, Yoshinori Sakamoto, Masahiro Shimizu, Yoshinori Ikeda, Osamu Tsuchiya, Kazunori Furusawa:
A 126 mm2 4-Gb Multilevel AG-AND Flash Memory with Inversion-Layer-Bit-Line Technology. IEICE Trans. Electron. 90-C(11): 2146-2156 (2007) - 2006
- [j3]Akio Ishiguro, Masahiro Shimizu, Toshihiro Kawakatsu:
A modular robot that exhibits amoebic locomotion. Robotics Auton. Syst. 54(8): 641-650 (2006) - [c8]Akio Ishiguro, Masahiro Shimizu:
On the Task Distribution Between Control and Mechanical Systems. 50 Years of Artificial Intelligence 2006: 144-153 - [c7]Akio Ishiguro, Hiroaki Matsuba, Tomoki Maegawa, Masahiro Shimizu:
A Modular Robot That Self-Assembles. IAS 2006: 585-594 - [c6]Masahiro Shimizu, Takafumi Mori, Akio Ishiguro:
A Development of a Modular Robot That Enables Adaptive Reconfiguration. IROS 2006: 174-179 - 2005
- [c5]Masahiro Shimizu, Toshihiro Kawakatsu, Akio Ishiguro:
Slimebot: A Modular Robot That Exploits Emergent Phenomena. ICRA 2005: 2982-2987 - [c4]Masahiro Shimizu, Akio Ishiguro, Toshihiro Kawakatsu:
A modular robot that exploits a spontaneous connectivity control mechanism. IROS 2005: 1899-1904 - 2004
- [j2]Masahiro Shimizu, Akio Ishiguro, Masayasu Takahashi, Toshihiro Kawakatsu, Yuichi Masubuchi, Masao Doi:
Adaptive Shape Reconfiguration of a Decentralized Motile System Exploiting Molecular Dynamics and Stokesian Dynamics Methods. J. Robotics Mechatronics 16(3): 271-277 (2004) - [c3]Masahiro Shimizu, Masayasu Takahashi, Toshihiro Kawakatsu, Akio Ishiguro:
Emergent Morphology Control of a Modular Robot by Exploiting the Interaction between Control and Mechanical Dynamics. DARS 2004: 23-32 - [c2]Akio Ishiguro, Masahiro Shimizu, Toshihiro Kawakatsu:
Don't try to control everything!: an emergent morphology control of a modular robot. IROS 2004: 981-985 - 2003
- [c1]Masahiro Shimizu, Akio Ishiguro, Toshihiro Kawakatsu, Yuichi Masubuchi, Masao Doi:
Coherent swarming from local interaction by exploiting molecular dynamics and stokesian dynamics methods. IROS 2003: 1614-1619
1980 – 1989
- 1989
- [j1]Masahiro Shimizu, Yoshiaki Kushiki, Ken Sakamura:
Operating system based on the BTRON specifications. Microprocess. Microsystems 13(8): 525-535 (1989)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:23 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint