default search action
AISafety/SafeRL@IJCAI 2023: Macao, SAR, China
- Gabriel Pedroza, Xiaowei Huang, Xin Cynthia Chen, Andreas Theodorou, Huáscar Espinoza, Nikolaos Matragkas, José Hernández-Orallo, Mauricio Castillo-Effen, Richard Mallah, John A. McDermid, David M. Bossens, Bettina Könighofer, Sebastian Tschiatschek, Anqi Liu:
Proceedings of the IJCAI-23 Joint Workshop on Artificial Intelligence Safety and Safe Reinforcement Learning (AISafety-SafeRL 2023) co-located with the 32nd International Joint Conference on Artificial Intelligence(IJCAI2023), Macau, China, August 21-22, 2023. CEUR Workshop Proceedings 3505, CEUR-WS.org 2023
Session 1: Robustness of AI via OoD and Unknown-Unknowns Dectection
- Nicola Franco, Daniel Korth, Jeanette Miriam Lorenz, Karsten Roscher, Stephan Günnemann:
Diffusion Denoised Smoothing for Certified and Adversarial Robust Out Of Distribution. - Prajit T. Rajendran, Huáscar Espinoza, Agnès Delaborde, Chokri Mraidha:
Unsupervised Unknown Unknown Detection in Active Learning.
Session 2: AI Robustness, Adversarial Attacks and Reinforcemnt Learning
- Xiao Yang, Gaolei Li, Chaofeng Zhang, Meng Han, Wu Yang:
PerCBA: Persistent Clean-label Backdoor Attacks on Semi-Supervised Graph Node Classification. - Chen Li, Hao Wang, Jinzhe Jiang, Xin Zhang, Yaqian Zhao, Weifeng Gong:
Distribution-restrained Softmax Loss for the Model Robustness. - Haritz Odriozola-Olalde, Nestor Arana-Arexolaleiba, Maider Zamalloa, Jon Pérez-Cerrolaza, Jokin Arozamena-Rodríguez:
Fear Field: Adaptive constraints for safe environment transitions in Shielded Reinforcement Learning.
Session 3: AI Governance and Policy/Value Alignment
- Diego Calanzone, Andrea Coppari, Riccardo Tedoldi, Giulia Olivato, Carlo Casonato:
An open source perspective on AI and alignment with the EU AI Act.
Session 4: Safe RL
- Ruoqi Zhang, Jens Sjölund:
Risk-sensitive Actor-free Policy via Convex Optimisation.
Session 5: AI Trustworthiness, Explainability and Testing
- Shuang Ao, Stefan Rueger, Advaith Siddharthan:
Empirical Optimal Risk to Quantify Model Trustworthiness for Failure Detection. - Iwo Kurzidem, Simon Burton, Philipp Schleiss:
AI for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.