default search action
A. Stephen McGough
Person information
- affiliation: Newcastle University, UK
- affiliation (former): Durham University, School of Engineering and Computing Sciences
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c78]Rob Geada, David Towers, Matthew Forshaw, Amir Atapour-Abarghouei, A. Stephen McGough:
Insights from the Use of Previously Unseen Neural Architecture Search Datasets. CVPR 2024: 22541-22550 - [i41]Rob Geada, David Towers, Matthew Forshaw, Amir Atapour-Abarghouei, A. Stephen McGough:
Insights from the Use of Previously Unseen Neural Architecture Search Datasets. CoRR abs/2404.02189 (2024) - [i40]Matthew Kent Myers, Nick Wright, A. Stephen McGough, Nicholas G. Martin:
O-TALC: Steps Towards Combating Oversegmentation within Online Action Segmentation. CoRR abs/2404.06894 (2024) - 2023
- [c77]Mohamad Elhadi Abushofa, Amir Atapour Abarghouei, Matthew Forshaw, Andrew Stephen McGough:
FEGR: Feature Enhanced Graph Representation Method for Graph Classification. ASONAM 2023: 371-378 - [c76]Ayse Betul Cengiz, A. Stephen McGough:
How much data do I need? A case study on medical data. IEEE Big Data 2023: 3688-3697 - [c75]Atif Khan, Conor Lawless, Amy E. Vincent, Charlotte Warren, Valeria Di Leo, Tiago Gomes, A. Stephen McGough:
NCL-SM: A Fully Annotated Dataset of Images from Human Skeletal Muscle Biopsies. IEEE Big Data 2023: 3704-3710 - [c74]Mohamad Khalil, A. Stephen McGough, Hussain Kazmi, Sara Walker:
The Forecastability of Underlying Building Electricity Demand from Time Series Data. IEEE Big Data 2023: 3785-3793 - [c73]Samuel Appleby, Kirsten Crane, Giacomo Bergami, A. Stephen McGough:
SWiMM DEEPeR: A Simulated Underwater Environment for Tracking Marine Mammals Using Deep Reinforcement Learning and BlueROV2. CoG 2023: 1-8 - [c72]Matthew Kent Myers, Nick Wright, A. Stephen McGough, Nicholas G. Martin:
Hand Guided High Resolution Feature Enhancement for Fine-Grained Atomic Action Segmentation within Complex Human Assemblies. WACV (Workshops) 2023: 1-10 - [c71]Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, Andrew Stephen McGough:
Predicting the Performance of a Computing System with Deep Networks. ICPE 2023: 91-98 - [i39]Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, Andrew Stephen McGough:
Predicting the Performance of a Computing System with Deep Networks. CoRR abs/2302.13638 (2023) - [i38]Atif Khan, Conor Lawless, Amy E. Vincent, Charlotte Warren, Valeria Di Leo, Tiago Gomes, A. Stephen McGough:
Introducing NCL-SM: A Fully Annotated Dataset of Images from Human Skeletal Muscle Biopsies. CoRR abs/2311.11099 (2023) - [i37]Atif Khan, Conor Lawless, Amy E. Vincent, Charlotte Warren, Valeria Di Leo, Tiago Gomes, A. Stephen McGough:
NCL-SM: A Fully Annotated Dataset of Images from Human Skeletal Muscle Biopsies. CoRR abs/2311.15113 (2023) - [i36]Ayse Betul Cengiz, A. Stephen McGough:
How much data do I need? A case study on medical data. CoRR abs/2311.15331 (2023) - [i35]Mohamad Khalil, A. Stephen McGough, Hussain Kazmi, Sara Walker:
The Forecastability of Underlying Building Electricity Demand from Time Series Data. CoRR abs/2311.18078 (2023) - [i34]Georgia Atkinson, Nick Wright, A. Stephen McGough, Per Berggren:
The Effects of Signal-to-Noise Ratio on Generative Adversarial Networks Applied to Marine Bioacoustic Data. CoRR abs/2312.14806 (2023) - 2022
- [j23]Mohamad Khalil, A. Stephen McGough, Zoya Pourmirza, Mehdi Pazhoohesh, Sara Walker:
Machine Learning, Deep Learning and Statistical Analysis for forecasting building energy consumption - A systematic review. Eng. Appl. Artif. Intell. 115: 105287 (2022) - [j22]Kenan Koc, Andrew Stephen McGough, Sara Johansson Fernstad:
PeaGlyph: Glyph design for investigation of balanced data structures. Inf. Vis. 21(1): 74-92 (2022) - [j21]Becky Allen, Andrew Stephen McGough, Marie Devlin:
Toward a Framework for Teaching Artificial Intelligence to a Higher Education Audience. ACM Trans. Comput. Educ. 22(2): 15:1-15:29 (2022) - [c70]Cameron Trotter, Nick Wright, A. Stephen McGough, Matthew Sharpe, Barbara Cheney, Mònica Arso Civil, Reny Tyson Moore, Jason Allen, Per Berggren:
Towards Automatic Cetacean Photo-Identification: A Framework for Fine-Grain, Few-Shot Learning in Marine Ecology. IEEE Big Data 2022: 1942-1949 - [c69]Michael Luke Battle, Amir Atapour-Abarghouei, Andrew Stephen McGough:
Siamese Neural Networks for Skin Cancer Classification and New Class Detection using Clinical and Dermoscopic Image Datasets. IEEE Big Data 2022: 4346-4355 - [c68]Atif Khan, Conor Lawless, Amy E. Vincent, Satish Pilla, Sushanth Ramesh, A. Stephen McGough:
Explainable Deep Learning to Profile Mitochondrial Disease Using High Dimensional Protein Expression Data. IEEE Big Data 2022: 4375-4384 - [c67]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
Optimizing a domestic battery and solar photovoltaic system with deep reinforcement learning. IEEE Big Data 2022: 4495-4502 - [c66]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
A systematic literature review on machine learning for electricity market agent-based models. IEEE Big Data 2022: 4503-4512 - [c65]Rob Geada, Andrew Stephen McGough:
SpiderNet: Hybrid Differentiable-Evolutionary Architecture Search via Train-Free Metrics. CVPR Workshops 2022: 1961-1969 - [c64]Andrew Stephen McGough, Matthew Forshaw:
Analysis of Reinforcement Learning for Determining Task Replication in Workflows. EPEW 2022: 117-132 - [i33]Rob Geada, Andrew Stephen McGough:
SpiderNet: Hybrid Differentiable-Evolutionary Architecture Search via Train-Free Metrics. CoRR abs/2204.09320 (2022) - [i32]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
Machine learning applications for electricity market agent-based models: A systematic literature review. CoRR abs/2206.02196 (2022) - [i31]David Towers, Matthew Forshaw, Amir Atapour-Abarghouei, Andrew Stephen McGough:
Long-term Reproducibility for Neural Architecture Search. CoRR abs/2207.04821 (2022) - [i30]Andrew Stephen McGough, Matthew Forshaw:
Analysis of Reinforcement Learning for determining task replication in workflows. CoRR abs/2209.13531 (2022) - [i29]Atif Khan, Conor Lawless, Amy E. Vincent, Satish Pilla, Sushanth Ramesh, A. Stephen McGough:
Explainable Deep Learning to Profile Mitochondrial Disease Using High Dimensional Protein Expression Data. CoRR abs/2210.17360 (2022) - [i28]Matthew Kent Myers, Nick Wright, A. Stephen McGough, Nicholas G. Martin:
Hand Guided High Resolution Feature Enhancement for Fine-Grained Atomic Action Segmentation within Complex Human Assemblies. CoRR abs/2211.13694 (2022) - [i27]Cameron Trotter, Nick Wright, A. Stephen McGough, Matthew Sharpe, Barbara Cheney, Mònica Arso Civil, Reny Tyson Moore, Jason Allen, Per Berggren:
Towards Automatic Cetacean Photo-Identification: A Framework for Fine-Grain, Few-Shot Learning in Marine Ecology. CoRR abs/2212.03646 (2022) - [i26]Michael Luke Battle, Amir Atapour-Abarghouei, Andrew Stephen McGough:
Siamese Neural Networks for Skin Cancer Classification and New Class Detection using Clinical and Dermoscopic Image Datasets. CoRR abs/2212.06130 (2022) - 2021
- [j20]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
The impact of online machine-learning methods on long-term investment decisions and generator utilization in electricity markets. Sustain. Comput. Informatics Syst. 30: 100532 (2021) - [c63]Amir Atapour-Abarghouei, Stephen Bonner, Andrew Stephen McGough:
Rank over Class: The Untapped Potential of Ranking in Natural Language Processing. IEEE BigData 2021: 3950-3959 - [c62]Ryan Curry, Cameron Trotter, A. Stephen McGough:
Application of deep learning to camera trap data for ecologists in planning / engineering - Can captivity imagery train a model which generalises to the wild? IEEE BigData 2021: 4011-4020 - [c61]Becky Allen, Marie Devlin, A. Stephen McGough:
Using the One Minute Paper to Gain Insight into Potential Threshold Concepts in Artificial Intelligence Courses. CEP 2021: 21-24 - [i25]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
The impact of online machine-learning methods on long-term investment decisions and generator utilization in electricity markets. CoRR abs/2103.04327 (2021) - [i24]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
Optimizing a domestic battery and solar photovoltaic system with deep reinforcement learning. CoRR abs/2109.05024 (2021) - [i23]Ryan Curry, Cameron Trotter, Andrew Stephen McGough:
Application of deep learning to camera trap data for ecologists in planning / engineering - Can captivity imagery train a model which generalises to the wild? CoRR abs/2111.12805 (2021) - 2020
- [j19]Noura Al Moubayed, Andrew Stephen McGough, Bashar Awwad Shiekh Hasan:
Beyond the topics: how deep learning can improve the discriminability of probabilistic topic modelling. PeerJ Comput. Sci. 6: e252 (2020) - [c60]John Brennan, Stephen Bonner, Amir Atapour Abarghouei, Philip T. G. Jackson, Boguslaw Obara, Andrew Stephen McGough:
Not Half Bad: Exploring Half-Precision in Graph Convolutional Neural Networks. IEEE BigData 2020: 2725-2734 - [c59]Amir Atapour Abarghouei, A. Stephen McGough, David S. Wall:
Resolving the cybersecurity Data Sharing Paradox to scale up cybersecurity via a co-production approach towards data sharing. IEEE BigData 2020: 3867-3876 - [c58]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
Exploring market power using deep reinforcement learning for intelligent bidding strategies. IEEE BigData 2020: 4402-4411 - [c57]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
Long-term electricity market agent based model validation using genetic algorithm based optimization. e-Energy 2020: 1-13 - [c56]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
Optimizing carbon tax for decentralized electricity markets using an agent-based model. e-Energy 2020: 454-460 - [c55]Mohammad Samawat Ullah, A. Stephen McGough:
Distributed Disk Store. ICCA 2020: 50:1-50:10 - [i22]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
Long-term electricity market agent based model validation using genetic algorithm based optimization. CoRR abs/2005.10346 (2020) - [i21]Cameron Trotter, Georgia Atkinson, Matthew Sharpe, Kirsten Richardson, A. Stephen McGough, Nick Wright, Ben Burville, Per Berggren:
NDD20: A large-scale few-shot dolphin dataset for coarse and fine-grained categorisation. CoRR abs/2005.13359 (2020) - [i20]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
Optimizing carbon tax for decentralized electricity markets using an agent-based model. CoRR abs/2006.01601 (2020) - [i19]Rob Geada, Dennis Prangle, Andrew Stephen McGough:
Bonsai-Net: One-Shot Neural Architecture Search via Differentiable Pruners. CoRR abs/2006.09264 (2020) - [i18]Amir Atapour Abarghouei, Stephen Bonner, Andrew Stephen McGough:
Rank over Class: The Untapped Potential of Ranking in Natural Language Processing. CoRR abs/2009.05160 (2020) - [i17]John Brennan, Stephen Bonner, Amir Atapour Abarghouei, Philip T. G. Jackson, Boguslaw Obara, Andrew Stephen McGough:
Not Half Bad: Exploring Half-Precision in Graph Convolutional Neural Networks. CoRR abs/2010.12635 (2020) - [i16]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
Exploring market power using deep reinforcement learning for intelligent bidding strategies. CoRR abs/2011.04079 (2020) - [i15]Amir Atapour Abarghouei, Andrew Stephen McGough, David Stanley Wall:
Resolving the cybersecurity Data Sharing Paradox to scale up cybersecurity via a co-production approach towards data sharing. CoRR abs/2011.12709 (2020)
2010 – 2019
- 2019
- [j18]Stephen Bonner, Ibad Kureshi, John Brennan, Georgios Theodoropoulos, Andrew Stephen McGough, Boguslaw Obara:
Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study. Data Sci. Eng. 4(3): 269-289 (2019) - [j17]Bowen Li, Denis Taniguchi, Pahala Gedara Jayathilake, Valentina Gogulancea, Rebeca Gonzalez-Cabaleiro, Jinju Chen, Andrew Stephen McGough, Irina Dana Ofiteru, Thomas P. Curtis, Paolo Zuliani:
NUFEB: A massively parallel simulator for individual-based modelling of microbial communities. PLoS Comput. Biol. 15(12) (2019) - [c54]Mahnaz Mohammadi, Sardar F. Jaf, Andrew Stephen McGough, Toby P. Breckon, Peter Matthews, Georgios Theodoropoulos, Boguslaw Obara:
On the Use of Neural Text Generation for the Task of Optical Character Recognition. AICCSA 2019: 1-8 - [c53]Amir Atapour Abarghouei, Stephen Bonner, Andrew Stephen McGough:
A King's Ransom for Encryption: Ransomware Classification using Augmented One-Shot Learning and Bayesian Approximation. IEEE BigData 2019: 1601-1606 - [c52]Amir Atapour Abarghouei, Stephen Bonner, Andrew Stephen McGough:
Volenti non fit injuria: Ransomware and its Victims. IEEE BigData 2019: 4701-4707 - [c51]Stephen Bonner, Amir Atapour Abarghouei, Philip T. G. Jackson, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Andrew Stephen McGough, Boguslaw Obara:
Temporal Neighbourhood Aggregation: Predicting Future Links in Temporal Graphs via Recurrent Variational Graph Convolutions. IEEE BigData 2019: 5336-5345 - [c50]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
Modelling Carbon Tax in the UK Electricity Market using an Agent-Based Model. e-Energy 2019: 425-427 - [c49]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
ElecSim: Monte-Carlo Open-Source Agent-Based Model to Inform Policy for Long-Term Electricity Planning. e-Energy 2019: 556-565 - [c48]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
Optimising energy and overhead for large parameter space simulations. IGSC 2019: 1-8 - [i14]Fady Medhat, Mahnaz Mohammadi, Sardar F. Jaf, Chris G. Willcocks, Toby P. Breckon, Peter Matthews, Andrew Stephen McGough, Georgios Theodoropoulos, Boguslaw Obara:
TMIXT: A process flow for Transcribing MIXed handwritten and machine-printed Text. CoRR abs/1904.12387 (2019) - [i13]Cameron Trotter, Georgia Atkinson, Matthew Sharpe, A. Stephen McGough, Nick Wright, Per Berggren:
The Northumberland Dolphin Dataset: A Multimedia Individual Cetacean Dataset for Fine-Grained Categorisation. CoRR abs/1908.02669 (2019) - [i12]Amir Atapour Abarghouei, Stephen Bonner, Andrew Stephen McGough:
A Kings Ransom for Encryption: Ransomware Classification using Augmented One-Shot Learning and Bayesian Approximation. CoRR abs/1908.06750 (2019) - [i11]Stephen Bonner, Amir Atapour Abarghouei, Philip T. G. Jackson, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Andrew Stephen McGough, Boguslaw Obara:
Temporal Neighbourhood Aggregation: Predicting Future Links in Temporal Graphs via Recurrent Variational Graph Convolutions. CoRR abs/1908.08402 (2019) - [i10]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
Optimising energy and overhead for large parameter space simulations. CoRR abs/1910.02516 (2019) - [i9]Alexander J. M. Kell, Matthew Forshaw, A. Stephen McGough:
ElecSim: Monte-Carlo Open-Source Agent-Based Model to Inform Policy for Long-Term Electricity Planning. CoRR abs/1911.01203 (2019) - [i8]Amir Atapour Abarghouei, Stephen Bonner, Andrew Stephen McGough:
Volenti non fit injuria: Ransomware and its Victims. CoRR abs/1911.08364 (2019) - 2018
- [j16]A. Stephen McGough, Matthew Forshaw:
Introduction to special issue on Energy-Aware Simulation and Modelling (ENERGY-SIM). Sustain. Comput. Informatics Syst. 18: 135-136 (2018) - [c47]Amit Gajbhiye, Sardar F. Jaf, Noura Al Moubayed, Steven Bradley, A. Stephen McGough:
CAM: A Combined Attention Model for Natural Language Inference. IEEE BigData 2018: 1009-1014 - [c46]Fady Medhat, Mahnaz Mohammadi, Sardar F. Jaf, Chris G. Willcocks, Toby P. Breckon, Peter Matthews, Andrew Stephen McGough, Georgios Theodoropoulos, Boguslaw Obara:
TMIXT: A process flow for Transcribing MIXed handwritten and machine-printed Text. IEEE BigData 2018: 2986-2994 - [c45]Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Andrew Stephen McGough, Boguslaw Obara:
Temporal Graph Offset Reconstruction: Towards Temporally Robust Graph Representation Learning. IEEE BigData 2018: 3737-3746 - [c44]Daniel Justus, John Brennan, Stephen Bonner, Andrew Stephen McGough:
Predicting the Computational Cost of Deep Learning Models. IEEE BigData 2018: 3873-3882 - [c43]Osama Nasser Alrajeh, Matthew Forshaw, Andrew Stephen McGough, Nigel Thomas:
Simulation of Virtual Machine Live Migration in High Throughput Computing Environments. DS-RT 2018: 47-54 - [c42]Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw:
Segmenting Residential Smart Meter Data for Short-Term Load Forecasting. e-Energy 2018: 91-96 - [c41]A. Stephen McGough, Matthew Forshaw, John Brennan, Noura Al Moubayed, Stephen Bonner:
Using Machine Learning to reduce the energy wasted in Volunteer Computing Environments. IGSC 2018: 1-8 - [c40]Amit Gajbhiye, Sardar F. Jaf, Noura Al Moubayed, A. Stephen McGough, Steven Bradley:
An Exploration of Dropout with RNNs for Natural Language Inference. ICANN (3) 2018: 157-167 - [c39]Zakhriya Alhassan, A. Stephen McGough, Riyad Alshammari, Tahani Daghstani, David Budgen, Noura Al Moubayed:
Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data Using Deep Learning Models. ICANN (3) 2018: 468-478 - [c38]Thomas Ryder, Andrew Golightly, A. Stephen McGough, Dennis Prangle:
Black-Box Variational Inference for Stochastic Differential Equations. ICML 2018: 4420-4429 - [c37]Zakhriya Alhassan, David Budgen, Riyad Alshammari, Tahani Daghstani, A. Stephen McGough, Noura Al Moubayed:
Stacked Denoising Autoencoders for Mortality Risk Prediction Using Imbalanced Clinical Data. ICMLA 2018: 541-546 - [c36]A. Stephen McGough, Matthew Forshaw:
Evaluation of Energy Consumption of Replicated Tasks in a Volunteer Computing Environment. ICPE Companion 2018: 85-90 - [i7]Stephen Bonner, Ibad Kureshi, John Brennan, Georgios Theodoropoulos, Andrew Stephen McGough, Boguslaw Obara:
Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study. CoRR abs/1806.07464 (2018) - [i6]Amit Gajbhiye, Sardar F. Jaf, Noura Al Moubayed, A. Stephen McGough, Steven Bradley:
An Exploration of Dropout with RNNs for Natural Language Inference. CoRR abs/1810.08606 (2018) - [i5]A. Stephen McGough, Matthew Forshaw, John Brennan, Noura Al Moubayed, Stephen Bonner:
Using Machine Learning to reduce the energy wasted in Volunteer Computing Environments. CoRR abs/1810.08675 (2018) - [i4]Tom Ryder, Andrew Golightly, A. Stephen McGough, Dennis Prangle:
Black-Box Autoregressive Density Estimation for State-Space Models. CoRR abs/1811.08337 (2018) - [i3]Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Andrew Stephen McGough, Boguslaw Obara:
Temporal Graph Offset Reconstruction: Towards Temporally Robust Graph Representation Learning. CoRR abs/1811.08366 (2018) - [i2]Daniel Justus, John Brennan, Stephen Bonner, Andrew Stephen McGough:
Predicting the Computational Cost of Deep Learning Models. CoRR abs/1811.11880 (2018) - 2017
- [c35]Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Andrew Stephen McGough, Boguslaw Obara:
Evaluating the quality of graph embeddings via topological feature reconstruction. IEEE BigData 2017: 2691-2700 - [c34]Noura Al Moubayed, David Wall, A. Stephen McGough:
Identifying Changes in the Cybersecurity Threat Landscape Using the LDA-Web Topic Modelling Data Search Engine. HCI (22) 2017: 287-295 - [c33]Noura Al Moubayed, Bashar Awwad Shiekh Hasan, Andrew Stephen McGough:
Enhanced detection of movement onset in EEG through deep oversampling. IJCNN 2017: 71-78 - [c32]A. Stephen McGough, Noura Al Moubayed, Matthew Forshaw:
Using Machine Learning in Trace-driven Energy-Aware Simulations of High-Throughput Computing Systems. ICPE Companion 2017: 55-60 - 2016
- [j15]Matthew Forshaw, A. Stephen McGough, Nigel Thomas:
HTC-Sim: a trace-driven simulation framework for energy consumption in high-throughput computing systems. Concurr. Comput. Pract. Exp. 28(12): 3260-3290 (2016) - [c31]Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough:
Deep topology classification: A new approach for massive graph classification. IEEE BigData 2016: 3290-3297 - [c30]Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough:
GFP-X: A parallel approach to massive graph comparison using spark. IEEE BigData 2016: 3298-3307 - [c29]Noura Al Moubayed, Toby P. Breckon, Peter Matthews, A. Stephen McGough:
SMS Spam Filtering Using Probabilistic Topic Modelling and Stacked Denoising Autoencoder. ICANN (2) 2016: 423-430 - [i1]Noura Al Moubayed, Toby P. Breckon, Peter Matthews, A. Stephen McGough:
SMS Spam Filtering using Probabilistic Topic Modelling and Stacked Denoising Autoencoder. CoRR abs/1606.05554 (2016) - 2015
- [j14]Andrew Stephen McGough, Budi Arief, Carl Gamble, David Wall, John Brennan, John S. Fitzgerald, Aad P. A. van Moorsel, Sujeewa Alwis, Georgios Theodoropoulos, Ed Ruck-Keene:
Ben-ware: Identifying Anomalous Human Behaviour in Heterogeneous Systems Using Beneficial Intelligent Software. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 6(4): 3-46 (2015) - [c28]Stephen Bonner, Andrew Stephen McGough, Ibad Kureshi, John Brennan, Georgios Theodoropoulos, Laura Moss, David Corsar, Grigoris Antoniou:
Data quality assessment and anomaly detection via map/reduce and linked data: A case study in the medical domain. IEEE BigData 2015: 737-746 - [c27]Andrew Stephen McGough, David Wall, John Brennan, Georgios Theodoropoulos, Ed Ruck-Keene, Budi Arief, Carl Gamble, John S. Fitzgerald, Aad P. A. van Moorsel, Sujeewa Alwis:
Insider Threats: Identifying Anomalous Human Behaviour in Heterogeneous Systems Using Beneficial Intelligent Software (Ben-ware). MIST@CCS 2015: 1-12 - [c26]A. Stephen McGough, Matthew Forshaw:
Energy-Aware Simulation of Workflow Execution in High Throughput Computing Systems. DS-RT 2015: 25-32 - [c25]Matthew Forshaw, A. Stephen McGough:
Flipping the priority: effects of prioritising HTC jobs on energy consumption in a multi-use cluster. SimuTools 2015: 357-364 - 2014
- [j13]Andrew Stephen McGough, Matthew Forshaw, Clive Gerrard, Stuart Wheater, Ben Allen, Paul Robinson:
Comparison of a cost-effective virtual cloud cluster with an existing campus cluster. Future Gener. Comput. Syst. 41: 65-78 (2014) - [j12]A. Stephen McGough, Matthew Forshaw:
Reduction of wasted energy in a volunteer computing system through Reinforcement Learning. Sustain. Comput. Informatics Syst. 4(4): 262-275 (2014) - [c24]Matthew Forshaw, Nigel Thomas, A. Stephen McGough:
Trace-Driven Simulation for Energy Consumption in High Throughput Computing Systems. DS-RT 2014: 27-34 - [c23]Andrew Stephen McGough, Isi Mitrani:
Optimal Hiring of Cloud Servers. EPEW 2014: 1-15 - [c22]Matthew Forshaw, Andrew Stephen McGough, Nigel Thomas:
On Energy-efficient Checkpointing in High-throughput Cycle-stealing Distributed Systems. SMARTGREENS 2014: 262-267 - [c21]Matthew Forshaw, Andrew Stephen McGough, Nigel Thomas:
Energy-efficient Checkpointing in High-throughput Cycle-stealing Distributed Systems. PASM 2014: 65-90 - 2013
- [j11]Andrew Stephen McGough, Matthew Forshaw, Clive Gerrard, Paul Robinson, Stuart Wheater:
Analysis of power-saving techniques over a large multi-use cluster with variable workload. Concurr. Comput. Pract. Exp. 25(18): 2501-2522 (2013) - [j10]Vassilis Glenis, Andrew Stephen McGough, Vedrana Kutija, Chris G. Kilsby, Simon Woodman:
Flood modelling for cities using Cloud computing. J. Cloud Comput. 2: 7 (2013) - 2012
- [c20]Andrew Stephen McGough, Matthew Forshaw, Clive Gerrard, Stuart Wheater:
Reducing the Number of Miscreant Tasks Executions in a Multi-use Cluster. CGC 2012: 296-303 - [c19]A. Stephen McGough, S. Liang, M. Rapoportas, R. Grey, G. Kumar Vinod, D. Maddy, A. Trueman, John Wainwright:
Massively parallel landscape-evolution modelling using general purpose graphical processing units. HiPC 2012: 1-10 - 2011
- [c18]Andrew Stephen McGough, Clive Gerrard, Jonathan Noble, Paul Robinson, Stuart Wheater:
Analysis of Power-Saving Techniques over a Large Multi-use Cluster. DASC 2011: 364-371 - [c17]Andrew Stephen McGough:
Developing a Cost-Effective Virtual Cluster on the Cloud. GECON 2011: 185-197 - 2010
- [c16]Dave Colling, Andrew Stephen McGough, Tiejun Ma, Vesso Novov, Jazz Mack Smith, David Wallom, Xin Xiong:
Adding Standards Based Job Submission to a Commodity Grid Broker. CIT 2010: 1530-1535 - [c15]Andrew Stephen McGough, Clive Gerrard, Paul Haldane, Dave Sharples, Daniel Swan, Paul Robinson, Sindre Hamlander, Stuart Wheater:
Intelligent Power Management Over Large Clusters. GreenCom/CPSCom 2010: 88-95
2000 – 2009
- 2008
- [j9]Ali Afzal, Andrew Stephen McGough, John Darlington:
Capacity planning and scheduling in Grid computing environments. Future Gener. Comput. Syst. 24(5): 404-414 (2008) - [j8]Andrew Stephen McGough, William Lee, Shikta Das:
A standards based approach to enabling legacy applications on the Grid. Future Gener. Comput. Syst. 24(7): 731-743 (2008) - [c14]Dave Colling, Andrew Stephen McGough, Jazz Mack Smith, Vesso Novov, Tiejun Ma, David Wallom, Xin Xiong:
Adding Standards Based Job Submission to a Commodity Grid Broker. eScience 2008: 380-381 - 2007
- [j7]Andrew Stephen McGough, Asif Akram, Li Guo, Marko Krznaric, Luke Dickens, Dave Colling, Janusz Martyniak, Roger S. Powell, Paul Kyberd, Chenxi Huang, Constantinos Kotsokalis, Panayotis Tsanakas:
GRIDCC: A Real-time Grid workflow system with QoS. Sci. Program. 15(4): 213-234 (2007) - [c13]Li Guo, Andrew Stephen McGough, Asif Akram, Dave Colling, Janusz Martyniak, Marko Krznaric:
Enabling QoS for Service-Oriented Workflow on GRID. CIT 2007: 1077-1082 - [c12]Andrew Stephen McGough, Asif Akram, Li Guo, Marko Krznaric, Luke Dickens, Dave Colling, Janusz Martyniak, Roger S. Powell, Paul Kyberd, Constantinos Kotsokalis:
GRIDCC: real-time workflow system. WORKS@HPDC 2007: 3-12 - [p1]A. Stephen McGough, William Lee, Jeremy Cohen, Eleftheria Katsiri, John Darlington:
ICENI. Workflows for e-Science, Scientific Workflows for Grids 2007: 395-415 - 2006
- [j6]Yash Patel, Andrew Stephen McGough, John Darlington:
A Profitable Broker in a Volatile Utility Grid. Int. Trans. Syst. Sci. Appl. 2(2): 167-176 (2006) - [c11]Ali Afzal, John Darlington, Andrew Stephen McGough:
Capacity Planning and Stochastic Scheduling in Large-Scale Grids. e-Science 2006: 86 - [c10]Ali Afzal, John Darlington, Andrew Stephen McGough:
Stochastic Workflow Scheduling with QoS Guarantees in Grid Computing Environments. GCC 2006: 185-194 - [c9]Ali Afzal, John Darlington, Andrew Stephen McGough:
QoS-Constrained Stochastic Workflow Scheduling in Enterprise and Scientific Grids. GRID 2006: 1-8 - [c8]Yash Patel, Andrew Stephen McGough, John Darlington:
QoS Support For Workflows In A Volatile Grid. GRID 2006: 64-71 - [c7]Dave Colling, Luke William Dickens, Tiziana Ferrari, Y. Hassoun, Constantinos Kotsokalis, Marko Krznaric, Janusz Martyniak, Andrew Stephen McGough, Elisabetta Ronchieri:
Adding Instruments and Workflow Support to Existing Grid Architectures. International Conference on Computational Science (3) 2006: 956-963 - [c6]Andrew Stephen McGough, William Lee, John Darlington:
Workflow Deployment in ICENI II. International Conference on Computational Science (3) 2006: 964-971 - 2005
- [j5]Andrew Stephen McGough, Ali Afzal, John Darlington, Nathalie Furmento, Anthony Edward Mayer, Laurie Robert Young:
Making the Grid Predictable through Reservations and Performance Modelling. Comput. J. 48(3): 358-368 (2005) - [j4]Andrew Stephen McGough, Jeremy Cohen, John Darlington, Eleftheria Katsiri, William Lee, Sofia Panagiotidi, Yash Patel:
An End-to-end Workflow Pipeline for Large-scale Grid Computing. J. Grid Comput. 3(3-4): 259-281 (2005) - 2002
- [j3]Nathalie Furmento, Anthony Edward Mayer, A. Stephen McGough, Steven J. Newhouse, Tony Field, John Darlington:
ICENI: Optimisation of component applications within a Grid environment. Parallel Comput. 28(12): 1753-1772 (2002) - [j2]Andrew Stephen McGough, Isi Mitrani:
Efficient parallel simulation of a sliding window protocol. Perform. Evaluation 48(1/4): 237-246 (2002) - [c5]Anthony Edward Mayer, A. Stephen McGough, Murtaza Gulamali, Laurie Robert Young, Jim Stanton, Steven J. Newhouse, John Darlington:
Meaning and Behaviour in Grid Oriented Components. GRID 2002: 100-111 - 2001
- [c4]Nathalie Furmento, Anthony Edward Mayer, A. Stephen McGough, Steven J. Newhouse, John Darlington:
A Component Framework for HPC Applications. Euro-Par 2001: 540-548 - [c3]Nathalie Furmento, Anthony Edward Mayer, A. Stephen McGough, Steven J. Newhouse, Tony Field, John Darlington:
An Integrated Grid Environment for Component Applications. GRID 2001: 26-37 - [c2]Nathalie Furmento, Anthony Edward Mayer, A. Stephen McGough, Steven J. Newhouse, Tony Field, John Darlington:
Optimisation of component-based applications within a grid environment. SC 2001: 30 - 2000
- [b1]Andrew Stephen McGough:
Parallel simulations using recurrence relations and relaxation. Newcastle University, Newcastle upon Tyne, UK, 2000 - [j1]Andrew Stephen McGough, Isi Mitrani:
Parallel simulation of ATM switches using relaxation. Perform. Evaluation 41(2-3): 149-164 (2000) - [c1]Andrew Stephen McGough, Isi Mitrani:
Efficient distributed simulation of a communication switch with bursty sources and losses. PADS 2000: 85-92
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 20:45 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint