default search action
Andrew G. Barto
Person information
- affiliation: University of Massachusetts Amherst, Department of Computer Science, MA, USA
Other persons with a similar name
- Andrew Bartolo (aka: Andrew M. Bartolo)
- Andrew Barton
- Andrew Barton-Sweeney
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [j30]Andrew G. Barto, Richard S. Sutton, Charles W. Anderson:
Looking Back on the Actor-Critic Architecture. IEEE Trans. Syst. Man Cybern. Syst. 51(1): 40-50 (2021)
2010 – 2019
- 2019
- [j29]Andrew G. Barto:
Reinforcement Learning: Connections, Surprises, and Challenge. AI Mag. 40(1): 3-15 (2019) - [j28]Vieri Giuliano Santucci, Pierre-Yves Oudeyer, Andrew G. Barto, Gianluca Baldassarre:
Editorial: Intrinsically Motivated Open-Ended Learning in Autonomous Robots. Frontiers Neurorobotics 13: 115 (2019) - 2017
- [r2]Andrew G. Barto:
Adaptive Real-Time Dynamic Programming. Encyclopedia of Machine Learning and Data Mining 2017: 20-23 - [i1]Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Emma Brunskill:
On Ensuring that Intelligent Machines Are Well-Behaved. CoRR abs/1708.05448 (2017) - 2015
- [j27]Scott Niekum, Sarah Osentoski, George Dimitri Konidaris, Sachin Chitta, Bhaskara Marthi, Andrew G. Barto:
Learning grounded finite-state representations from unstructured demonstrations. Int. J. Robotics Res. 34(2): 131-157 (2015) - [c71]Scott Niekum, Sarah Osentoski, Christopher G. Atkeson, Andrew G. Barto:
Online Bayesian changepoint detection for articulated motion models. ICRA 2015: 1468-1475 - 2014
- [j26]Alec Solway, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G. Barto, Yael Niv, Matthew M. Botvinick:
Optimal Behavioral Hierarchy. PLoS Comput. Biol. 10(8) (2014) - [j25]Andrew G. Barto:
Commentary on Utility and Bounds. Top. Cogn. Sci. 6(2): 338-341 (2014) - [c70]Bruno Castro da Silva, George Dimitri Konidaris, Andrew G. Barto:
Active Learning of Parameterized Skills. ICML 2014: 1737-1745 - [c69]Bruno Castro da Silva, Gianluca Baldassarre, George Dimitri Konidaris, Andrew G. Barto:
Learning parameterized motor skills on a humanoid robot. ICRA 2014: 5239-5244 - 2013
- [j24]Scott Kuindersma, Roderic A. Grupen, Andrew G. Barto:
Variable risk control via stochastic optimization. Int. J. Robotics Res. 32(7): 806-825 (2013) - [c68]Scott Niekum, Sachin Chitta, Andrew G. Barto, Bhaskara Marthi, Sarah Osentoski:
Incremental Semantically Grounded Learning from Demonstration. Robotics: Science and Systems 2013 - [p2]Andrew G. Barto, George Dimitri Konidaris, Christopher M. Vigorito:
Behavioral Hierarchy: Exploration and Representation. Computational and Robotic Models of the Hierarchical Organization of Behavior 2013: 13-46 - [p1]Andrew G. Barto:
Intrinsic Motivation and Reinforcement Learning. Intrinsically Motivated Learning in Natural and Artificial Systems 2013: 17-47 - 2012
- [j23]George Dimitri Konidaris, Scott Kuindersma, Roderic A. Grupen, Andrew G. Barto:
Robot learning from demonstration by constructing skill trees. Int. J. Robotics Res. 31(3): 360-375 (2012) - [j22]George Dimitri Konidaris, Ilya Scheidwasser, Andrew G. Barto:
Transfer in Reinforcement Learning via Shared Features. J. Mach. Learn. Res. 13: 1333-1371 (2012) - [c67]William Dabney, Andrew G. Barto:
Adaptive Step-Size for Online Temporal Difference Learning. AAAI 2012: 872-878 - [c66]Bruno Castro da Silva, Andrew G. Barto:
TD-DeltaPi: A Model-Free Algorithm for Efficient Exploration. AAAI 2012: 886-892 - [c65]Philip S. Thomas, Andrew G. Barto:
Motor primitive discovery. ICDL-EPIROB 2012: 1-8 - [c64]Bruno Castro da Silva, George Dimitri Konidaris, Andrew G. Barto:
Learning Parameterized Skills. ICML 2012 - [c63]Scott Niekum, Sarah Osentoski, George Dimitri Konidaris, Andrew G. Barto:
Learning and generalization of complex tasks from unstructured demonstrations. IROS 2012: 5239-5246 - [c62]Scott Kuindersma, Roderic A. Grupen, Andrew G. Barto:
Variational Bayesian Optimization for Runtime Risk-Sensitive Control. Robotics: Science and Systems 2012 - 2011
- [c61]George Dimitri Konidaris, Scott Kuindersma, Roderic A. Grupen, Andrew G. Barto:
Autonomous Skill Acquisition on a Mobile Manipulator. AAAI 2011: 1468-1473 - [c60]Scott Niekum, Andrew G. Barto:
Clustering via Dirichlet Process Mixture Models for Portable Skill Discovery. Lifelong Learning 2011 - [c59]Scott Niekum, Lee Spector, Andrew G. Barto:
Evolution of reward functions for reinforcement learning. GECCO (Companion) 2011: 177-178 - [c58]Scott Kuindersma, Roderic A. Grupen, Andrew G. Barto:
Learning dynamic arm motions for postural recovery. Humanoids 2011: 7-12 - [c57]Philip S. Thomas, Andrew G. Barto:
Conjugate Markov Decision Processes. ICML 2011: 137-144 - [c56]Scott Niekum, Andrew G. Barto:
Clustering via Dirichlet Process Mixture Models for Portable Skill Discovery. NIPS 2011: 1818-1826 - 2010
- [j21]Satinder Singh, Richard L. Lewis, Andrew G. Barto, Jonathan Sorg:
Intrinsically Motivated Reinforcement Learning: An Evolutionary Perspective. IEEE Trans. Auton. Ment. Dev. 2(2): 70-82 (2010) - [j20]Scott Niekum, Andrew G. Barto, Lee Spector:
Genetic Programming for Reward Function Search. IEEE Trans. Auton. Ment. Dev. 2(2): 83-90 (2010) - [j19]Christopher M. Vigorito, Andrew G. Barto:
Intrinsically Motivated Hierarchical Skill Learning in Structured Environments. IEEE Trans. Auton. Ment. Dev. 2(2): 132-143 (2010) - [c55]Andrew Stout, Andrew G. Barto:
Competence progress intrinsic motivation. ICDL 2010: 257-262 - [c54]George Dimitri Konidaris, Scott Kuindersma, Andrew G. Barto, Roderic A. Grupen:
Constructing Skill Trees for Reinforcement Learning Agents from Demonstration Trajectories. NIPS 2010: 1162-1170 - [r1]Andrew G. Barto:
Adaptive Real-Time Dynamic Programming. Encyclopedia of Machine Learning 2010: 19-22
2000 – 2009
- 2009
- [c53]George Dimitri Konidaris, Andrew G. Barto:
Efficient Skill Learning using Abstraction Selection. IJCAI 2009: 1107-1112 - [c52]George Dimitri Konidaris, Andrew G. Barto:
Skill Discovery in Continuous Reinforcement Learning Domains using Skill Chaining. NIPS 2009: 1015-1023 - 2008
- [c51]Christopher M. Vigorito, Andrew G. Barto:
Hierarchical Representations of Behavior for Efficient Creative Search. AAAI Spring Symposium: Creative Intelligent Systems 2008: 135-141 - [c50]Özgür Simsek, Andrew G. Barto:
Skill Characterization Based on Betweenness. NIPS 2008: 1497-1504 - 2007
- [j18]Andrew G. Barto:
Temporal difference learning. Scholarpedia 2(11): 1604 (2007) - [c49]Ivon Arroyo, Kimberly Ferguson, Jeffrey Johns, Toby Dragon, Hasmik Meheranian, Don Fisher, Andrew G. Barto, Sridhar Mahadevan, Beverly Park Woolf:
Repairing Disengagement With Non-Invasive Interventions. AIED 2007: 195-202 - [c48]George Dimitri Konidaris, Andrew G. Barto:
Building Portable Options: Skill Transfer in Reinforcement Learning. IJCAI 2007: 895-900 - [c47]Balaraman Ravindran, Andrew G. Barto, Vimal Mathew:
Deictic Option Schemas. IJCAI 2007: 1023-1028 - [c46]Anders Jonsson, Andrew G. Barto:
Active Learning of Dynamic Bayesian Networks in Markov Decision Processes. SARA 2007: 273-284 - [c45]Christopher M. Vigorito, Deepak Ganesan, Andrew G. Barto:
Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks. SECON 2007: 21-30 - 2006
- [j17]Anders Jonsson, Andrew G. Barto:
Causal Graph Based Decomposition of Factored MDPs. J. Mach. Learn. Res. 7: 2259-2301 (2006) - [j16]Michael T. Rosenstein, Andrew G. Barto, Richard E. A. Van Emmerik:
Learning at the level of synergies for a robot weightlifter. Robotics Auton. Syst. 54(8): 706-717 (2006) - [c44]Alicia P. Wolfe, Andrew G. Barto:
Decision Tree Methods for Finding Reusable MDP Homomorphisms. AAAI 2006: 530-535 - [c43]George Dimitri Konidaris, Andrew G. Barto:
Autonomous shaping: knowledge transfer in reinforcement learning. ICML 2006: 489-496 - [c42]Özgür Simsek, Andrew G. Barto:
An intrinsic reward mechanism for efficient exploration. ICML 2006: 833-840 - [c41]Kimberly Ferguson, Ivon Arroyo, Sridhar Mahadevan, Beverly Park Woolf, Andrew G. Barto:
Improving Intelligent Tutoring Systems: Using Expectation Maximization to Learn Student Skill Levels. Intelligent Tutoring Systems 2006: 453-462 - [c40]George Dimitri Konidaris, Andrew G. Barto:
An Adaptive Robot Motivational System. SAB 2006: 346-356 - 2005
- [c39]Anders Jonsson, Andrew G. Barto:
A causal approach to hierarchical decomposition of factored MDPs. ICML 2005: 401-408 - [c38]Özgür Simsek, Alicia P. Wolfe, Andrew G. Barto:
Identifying useful subgoals in reinforcement learning by local graph partitioning. ICML 2005: 816-823 - [c37]Özgür Simsek, Andrew G. Barto:
Learning Skills in Reinforcement Learning Using Relative Novelty. SARA 2005: 367-374 - 2004
- [c36]Michael T. Rosenstein, Andrew G. Barto:
Reinforcement learning with supervision by a stable controller. ACC 2004: 4517-4522 - [c35]Özgür Simsek, Andrew G. Barto:
Using relative novelty to identify useful temporal abstractions in reinforcement learning. ICML 2004 - [c34]Satinder Singh, Andrew G. Barto, Nuttapong Chentanez:
Intrinsically Motivated Reinforcement Learning. NIPS 2004: 1281-1288 - 2003
- [j15]Andrew G. Barto, Sridhar Mahadevan:
Recent Advances in Hierarchical Reinforcement Learning. Discret. Event Dyn. Syst. 13(1-2): 41-77 (2003) - [j14]Andrew G. Barto, Sridhar Mahadevan:
Recent Advances in Hierarchical Reinforcement Learning. Discret. Event Dyn. Syst. 13(4): 341-379 (2003) - [c33]Balaraman Ravindran, Andrew G. Barto:
Relativized Options: Choosing the Right Transformation. ICML 2003: 608-615 - [c32]Balaraman Ravindran, Andrew G. Barto:
SMDP Homomorphisms: An Algebraic Approach to Abstraction in Semi-Markov Decision Processes. IJCAI 2003: 1011-1018 - 2002
- [j13]Michael Kositsky, Andrew G. Barto:
The emergence of movement units through learning with noisy efferent signals and delayed sensory feedback. Neurocomputing 44-46: 889-895 (2002) - [j12]Theodore J. Perkins, Andrew G. Barto:
Lyapunov Design for Safe Reinforcement Learning. J. Mach. Learn. Res. 3: 803-832 (2002) - [j11]Amy McGovern, J. Eliot B. Moss, Andrew G. Barto:
Building a Basic Block Instruction Scheduler with Reinforcement Learning and Rollouts. Mach. Learn. 49(2-3): 141-160 (2002) - [c31]Marc Pickett, Andrew G. Barto:
PolicyBlocks: An Algorithm for Creating Useful Macro-Actions in Reinforcement Learning. ICML 2002: 506-513 - [c30]Balaraman Ravindran, Andrew G. Barto:
Model Minimization in Hierarchical Reinforcement Learning. SARA 2002: 196-211 - 2001
- [c29]Amy McGovern, Andrew G. Barto:
Automatic Discovery of Subgoals in Reinforcement Learning using Diverse Density. ICML 2001: 361-368 - [c28]Theodore J. Perkins, Andrew G. Barto:
Lyapunov-Constrained Action Sets for Reinforcement Learning. ICML 2001: 409-416 - [c27]Theodore J. Perkins, Andrew G. Barto:
Heuristic Search in Infinite State Spaces Guided by Lyapunov Analysis. IJCAI 2001: 242-247 - [c26]Michael T. Rosenstein, Andrew G. Barto:
Robot Weightlifting By Direct Policy Search. IJCAI 2001: 839-846 - [c25]Michael Kositsky, Andrew G. Barto:
The Emergence of Multiple Movement Units in the Presence of Noise and Feedback Delay. NIPS 2001: 43-50 - 2000
- [c24]Robert Moll, Theodore J. Perkins, Andrew G. Barto:
Machine Learning for Subproblem Selection. ICML 2000: 615-622 - [c23]Jette Randløv, Andrew G. Barto, Michael T. Rosenstein:
Combining Reinforcement Learning with a Local Control Algorithm. ICML 2000: 775-782 - [c22]Anders Jonsson, Andrew G. Barto:
Automated State Abstraction for Options using the U-Tree Algorithm. NIPS 2000: 1054-1060
1990 – 1999
- 1999
- [j10]Andrew G. Barto, Andrew H. Fagg, Nathan Sitkoff, James C. Houk:
A Cerebellar Model of Timing and Prediction in the Control of Reaching. Neural Comput. 11(3): 565-594 (1999) - 1998
- [b2]Richard S. Sutton, Andrew G. Barto:
Reinforcement learning - an introduction. Adaptive computation and machine learning, MIT Press 1998, ISBN 978-0-262-19398-6, pp. I-XVIII, 1-322 - [j9]Robert H. Crites, Andrew G. Barto:
Elevator Group Control Using Multiple Reinforcement Learning Agents. Mach. Learn. 33(2-3): 235-262 (1998) - [j8]Richard S. Sutton, Andrew G. Barto:
Reinforcement Learning: An Introduction. IEEE Trans. Neural Networks 9(5): 1054-1054 (1998) - [c21]Robert Moll, Andrew G. Barto, Theodore J. Perkins, Richard S. Sutton:
Learning Instance-Independent Value Functions to Enhance Local Search. NIPS 1998: 1017-1023 - 1997
- [c20]Andrew H. Fagg, Nathan Sitkoff, Andrew G. Barto, James C. Houk:
A model of cerebellar learning for control of arm movements using muscle synergies. CIRA 1997: 6-12 - [c19]Andrew H. Fagg, Nathan Sitkoff, Andrew G. Barto, James C. Houk:
Cerebellar learning for control of a two-link arm in muscle space. ICRA 1997: 2638-2644 - [c18]Jeffrey F. Monaco, David G. Ward, Andrew G. Barto:
Automated Aircraft Recovery via Reinforcement Learning: Initial Experiments. NIPS 1997: 1022-1028 - 1996
- [j7]Steven J. Bradtke, Andrew G. Barto:
Linear Least-Squares Algorithms for Temporal Difference Learning. Mach. Learn. 22(1-3): 33-57 (1996) - [c17]Ron Papka, James P. Callan, Andrew G. Barto:
Text-Based Information Retrieval Using Exponentiated Gradient Descent. NIPS 1996: 3-9 - [c16]Michael O. Duff, Andrew G. Barto:
Local Bandit Approximation for Optimal Learning Problems. NIPS 1996: 1019-1025 - [c15]Eric A. Hansen, Andrew G. Barto, Shlomo Zilberstein:
Reinforcement Learning for Mixed Open-loop and Closed-loop Control. NIPS 1996: 1026-1032 - 1995
- [j6]Andrew G. Barto, Steven J. Bradtke, Satinder P. Singh:
Learning to Act Using Real-Time Dynamic Programming. Artif. Intell. 72(1-2): 81-138 (1995) - [c14]Andrew G. Barto, James C. Houk:
A Predictive Switching Model of Cerebellar Movement Control. NIPS 1995: 138-144 - [c13]Robert H. Crites, Andrew G. Barto:
Improving Elevator Performance Using Reinforcement Learning. NIPS 1995: 1017-1023 - 1994
- [c12]Vijaykumar Gullapalli, Andrew G. Barto, Roderic A. Grupen:
Learning Admittance Mappings for Force-Guided Assembly. ICRA 1994: 2633-2638 - [c11]Robert H. Crites, Andrew G. Barto:
An Actor/Critic Algorithm that is Equivalent to Q-Learning. NIPS 1994: 401-408 - 1993
- [c10]Satinder Singh, Andrew G. Barto, Roderic A. Grupen, Christopher I. Connolly:
Robust Reinforcement Learning in Motion Planning. NIPS 1993: 655-662 - [c9]Andrew G. Barto, Michael O. Duff:
Monte Carlo Matrix Inversion and Reinforcement Learning. NIPS 1993: 687-694 - [c8]Vijaykumar Gullapalli, Andrew G. Barto:
Convergence of Indirect Adaptive Asynchronous Value Iteration Algorithms. NIPS 1993: 695-702 - [c7]Robert A. Jacobs, Michael I. Jordan, Andrew G. Barto:
Task Decompostiion Through Competition in a Modular Connectionist Architecture: The What and Where Vision Tasks. Machine Learning: From Theory to Applications 1993: 175-202 - 1992
- [c6]Vijaykumar Gullapalli, Roderic A. Grupen, Andrew G. Barto:
Learning reactive admittance control. ICRA 1992: 1475-1480 - 1991
- [j5]N. E. Berthier, Andrew G. Barto, J. W. Moore:
Linear systems analysis of the relationship between firing of deep cerebellar neurons and the classically conditioned nictitating membrane response in rabbits. Biol. Cybern. 65(2): 99-105 (1991) - [j4]Robert A. Jacobs, Michael I. Jordan, Andrew G. Barto:
Task Decomposition Through Competition in a Modular Connectionist Architecture: The What and Where Vision Tasks. Cogn. Sci. 15(2): 219-250 (1991) - [c5]N. E. Berthier, Satinder P. Singh, Andrew G. Barto, James C. Houk:
A Cortico-Cerebellar Model that Learns to Generate Distributed Motor Commands to Control a Kinematic Arm. NIPS 1991: 611-618 - 1990
- [c4]Richard C. Yee, Sharad Saxena, Paul E. Utgoff, Andrew G. Barto:
Explaining Temporal Differences to Create Useful Concepts for Evaluating States. AAAI 1990: 882-888 - [c3]T. Sinkjaer, C. H. Wu, Andrew G. Barto, James C. Houk:
Cerebellar control of endpoint position-a simulation model. IJCNN 1990: 705-710
1980 – 1989
- 1989
- [c2]Andrew G. Barto, Richard S. Sutton, Christopher J. C. H. Watkins:
Sequential Decision Probelms and Neural Networks. NIPS 1989: 686-693 - 1985
- [j3]Andrew G. Barto, P. Anandan:
Pattern-recognizing stochastic learning automata. IEEE Trans. Syst. Man Cybern. 15(3): 360-375 (1985) - [c1]Oliver G. Selfridge, Richard S. Sutton, Andrew G. Barto:
Training and Tracking in Robotics. IJCAI 1985: 670-672 - 1983
- [j2]Andrew G. Barto, Richard S. Sutton, Charles W. Anderson:
Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13(5): 834-846 (1983)
1970 – 1979
- 1978
- [j1]Andrew G. Barto:
A Note on Pattern Reproduction in Tessellation Structures. J. Comput. Syst. Sci. 16(3): 445-455 (1978) - 1975
- [b1]Andrew G. Barto:
Cellular Automata As Models Of Natural Systems. University of Michigan, USA, 1975
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-06 02:01 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint