default search action
Simon Lacoste-Julien
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j10]Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, Simon Lacoste-Julien:
PopulAtion Parameter Averaging (PAPA). Trans. Mach. Learn. Res. 2024 (2024) - [j9]Pranshu Malviya, Gonçalo Mordido, Aristide Baratin, Reza Babanezhad Harikandeh, Jerry Huang, Simon Lacoste-Julien, Razvan Pascanu, Sarath Chandar:
Promoting Exploration in Memory-Augmented Adam using Critical Momenta. Trans. Mach. Learn. Res. 2024 (2024) - [c68]Mehran Shakerinava, Motahareh Sohrabi, Siamak Ravanbakhsh, Simon Lacoste-Julien:
Weight-Sharing Regularization. AISTATS 2024: 4204-4212 - [c67]Vitória Barin Pacela, Kartik Ahuja, Simon Lacoste-Julien, Pascal Vincent:
On the Identifiability of Quantized Factors. CLeaR 2024: 384-422 - [c66]Meraj Hashemizadeh, Juan Ramirez, Rohan Sukumaran, Golnoosh Farnadi, Simon Lacoste-Julien, Jose Gallego-Posada:
Balancing Act: Constraining Disparate Impact in Sparse Models. ICLR 2024 - [c65]Motahareh Sohrabi, Juan Ramirez, Tianyue H. Zhang, Simon Lacoste-Julien, Jose Gallego-Posada:
On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization. ICML 2024 - [i83]Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre Lacoste, Simon Lacoste-Julien:
Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse Actions, Interventions and Sparse Temporal Dependencies. CoRR abs/2401.04890 (2024) - [i82]Motahareh Sohrabi, Juan Ramirez, Tianyue H. Zhang, Simon Lacoste-Julien, Jose Gallego-Posada:
On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization. CoRR abs/2406.04558 (2024) - [i81]António Góis, Mehrnaz Mofakhami, Fernando P. Santos, Simon Lacoste-Julien, Gauthier Gidel:
Performative Prediction on Games and Mechanism Design. CoRR abs/2408.05146 (2024) - [i80]Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, Simon Lacoste-Julien:
Accelerating Training with Neuron Interaction and Nowcasting Networks. CoRR abs/2409.04434 (2024) - [i79]Lucas Maes, Tianyue H. Zhang, Alexia Jolicoeur-Martineau, Ioannis Mitliagkas, Damien Scieur, Simon Lacoste-Julien, Charles Guille-Escuret:
Understanding Adam Requires Better Rotation Dependent Assumptions. CoRR abs/2410.19964 (2024) - 2023
- [j8]Gabriel Huang, Issam H. Laradji, David Vázquez, Simon Lacoste-Julien, Pau Rodríguez:
A Survey of Self-Supervised and Few-Shot Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 45(4): 4071-4089 (2023) - [c64]Jihye Kim, Aristide Baratin, Yan Zhang, Simon Lacoste-Julien:
CrossSplit: Mitigating Label Noise Memorization through Data Splitting. ICML 2023: 16377-16392 - [c63]Boris Knyazev, Doha Hwang, Simon Lacoste-Julien:
Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models? ICML 2023: 17243-17259 - [c62]Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio, Simon Lacoste-Julien, Quentin Bertrand:
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning. ICML 2023: 18171-18206 - [c61]Yan Zhang, David W. Zhang, Simon Lacoste-Julien, Gertjan J. Burghouts, Cees G. M. Snoek:
Unlocking Slot Attention by Changing Optimal Transport Costs. ICML 2023: 41931-41951 - [c60]Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, Simon Lacoste-Julien:
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation. NeurIPS 2023 - [i78]Yan Zhang, David W. Zhang, Simon Lacoste-Julien, Gertjan J. Burghouts, Cees G. M. Snoek:
Unlocking Slot Attention by Changing Optimal Transport Costs. CoRR abs/2301.13197 (2023) - [i77]Boris Knyazev, Doha Hwang, Simon Lacoste-Julien:
Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models? CoRR abs/2303.04143 (2023) - [i76]Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, Simon Lacoste-Julien:
PopulAtion Parameter Averaging (PAPA). CoRR abs/2304.03094 (2023) - [i75]Vitória Barin Pacela, Kartik Ahuja, Simon Lacoste-Julien, Pascal Vincent:
Identifiability of Discretized Latent Coordinate Systems via Density Landmarks Detection. CoRR abs/2306.16334 (2023) - [i74]Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, Simon Lacoste-Julien:
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation. CoRR abs/2307.02598 (2023) - [i73]Pranshu Malviya, Gonçalo Mordido, Aristide Baratin, Reza Babanezhad Harikandeh, Jerry Huang, Simon Lacoste-Julien, Razvan Pascanu, Sarath Chandar:
Promoting Exploration in Memory-Augmented Adam using Critical Momenta. CoRR abs/2307.09638 (2023) - [i72]Meraj Hashemizadeh, Juan Ramirez, Rohan Sukumaran, Golnoosh Farnadi, Simon Lacoste-Julien, Jose Gallego-Posada:
Balancing Act: Constraining Disparate Impact in Sparse Models. CoRR abs/2310.20673 (2023) - [i71]Mehran Shakerinava, Motahareh Sohrabi, Siamak Ravanbakhsh, Simon Lacoste-Julien:
Weight-Sharing Regularization. CoRR abs/2311.03096 (2023) - 2022
- [j7]Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, Andrea Lodi:
Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information. INFORMS J. Comput. 34(1): 227-242 (2022) - [j6]Benjamin Dubois-Taine, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, Simon Lacoste-Julien:
SVRG meets AdaGrad: painless variance reduction. Mach. Learn. 111(12): 4359-4409 (2022) - [c59]Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang:
On the Convergence of Continuous Constrained Optimization for Structure Learning. AISTATS 2022: 8176-8198 - [c58]Sébastien Lachapelle, Pau Rodríguez, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre Lacoste, Simon Lacoste-Julien:
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA. CLeaR 2022: 428-484 - [c57]Andjela Mladenovic, Avishek Joey Bose, Hugo Berard, William L. Hamilton, Simon Lacoste-Julien, Pascal Vincent, Gauthier Gidel:
Online Adversarial Attacks. ICLR 2022 - [c56]Yan Zhang, David W. Zhang, Simon Lacoste-Julien, Gertjan J. Burghouts, Cees G. M. Snoek:
Multiset-Equivariant Set Prediction with Approximate Implicit Differentiation. ICLR 2022 - [c55]Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio, Simon Lacoste-Julien:
Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints. NeurIPS 2022 - [c54]Marwa El Halabi, Suraj Srinivas, Simon Lacoste-Julien:
Data-Efficient Structured Pruning via Submodular Optimization. NeurIPS 2022 - [c53]Antonio Orvieto, Simon Lacoste-Julien, Nicolas Loizou:
Dynamics of SGD with Stochastic Polyak Stepsizes: Truly Adaptive Variants and Convergence to Exact Solution. NeurIPS 2022 - [c52]Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, Yoshua Bengio:
Bayesian structure learning with generative flow networks. UAI 2022: 518-528 - [i70]Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, Yoshua Bengio:
Bayesian Structure Learning with Generative Flow Networks. CoRR abs/2202.13903 (2022) - [i69]Marwa El Halabi, Suraj Srinivas, Simon Lacoste-Julien:
Data-Efficient Structured Pruning via Submodular Optimization. CoRR abs/2203.04940 (2022) - [i68]Sébastien Lachapelle, Simon Lacoste-Julien:
Partial Disentanglement via Mechanism Sparsity. CoRR abs/2207.07732 (2022) - [i67]Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio, Simon Lacoste-Julien:
Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints. CoRR abs/2208.04425 (2022) - [i66]Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio, Simon Lacoste-Julien, Quentin Bertrand:
Synergies Between Disentanglement and Sparsity: a Multi-Task Learning Perspective. CoRR abs/2211.14666 (2022) - [i65]Jihye Kim, Aristide Baratin, Yan Zhang, Simon Lacoste-Julien:
CrossSplit: Mitigating Label Noise Memorization through Data Splitting. CoRR abs/2212.01674 (2022) - 2021
- [c51]Rémi Le Priol, Reza Babanezhad, Yoshua Bengio, Simon Lacoste-Julien:
An Analysis of the Adaptation Speed of Causal Models. AISTATS 2021: 775-783 - [c50]Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, Simon Lacoste-Julien:
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence. AISTATS 2021: 1306-1314 - [c49]Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien:
Implicit Regularization via Neural Feature Alignment. AISTATS 2021: 2269-2277 - [c48]Namyeong Kwon, Hwidong Na, Gabriel Huang, Simon Lacoste-Julien:
Repurposing Pretrained Models for Robust Out-of-domain Few-Shot Learning. ICLR 2021 - [c47]Thomas Kerdreux, Lewis Liu, Simon Lacoste-Julien, Damien Scieur:
Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets. ICML 2021: 5398-5408 - [c46]Yassine Yaakoubi, François Soumis, Simon Lacoste-Julien:
Structured Convolutional Kernel Networks for Airline Crew Scheduling. ICML 2021: 11626-11636 - [c45]Nicolas Loizou, Hugo Berard, Gauthier Gidel, Ioannis Mitliagkas, Simon Lacoste-Julien:
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity. NeurIPS 2021: 19095-19108 - [i64]Benjamin Dubois-Taine, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, Simon Lacoste-Julien:
SVRG Meets AdaGrad: Painless Variance Reduction. CoRR abs/2102.09645 (2021) - [i63]Andjela Mladenovic, Avishek Joey Bose, Hugo Berard, William L. Hamilton, Simon Lacoste-Julien, Pascal Vincent, Gauthier Gidel:
Online Adversarial Attacks. CoRR abs/2103.02014 (2021) - [i62]Namyeong Kwon, Hwidong Na, Gabriel Huang, Simon Lacoste-Julien:
Repurposing Pretrained Models for Robust Out-of-domain Few-Shot Learning. CoRR abs/2103.09027 (2021) - [i61]Yassine Yaakoubi, François Soumis, Simon Lacoste-Julien:
Structured Convolutional Kernel Networks for Airline Crew Scheduling. CoRR abs/2105.11646 (2021) - [i60]Nicolas Loizou, Hugo Berard, Gauthier Gidel, Ioannis Mitliagkas, Simon Lacoste-Julien:
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity. CoRR abs/2107.00052 (2021) - [i59]Sébastien Lachapelle, Pau Rodríguez López, Rémi Le Priol, Alexandre Lacoste, Simon Lacoste-Julien:
Discovering Latent Causal Variables via Mechanism Sparsity: A New Principle for Nonlinear ICA. CoRR abs/2107.10098 (2021) - [i58]Gabriel Huang, Issam H. Laradji, David Vázquez, Simon Lacoste-Julien, Pau Rodríguez:
A Survey of Self-Supervised and Few-Shot Object Detection. CoRR abs/2110.14711 (2021) - [i57]Rémi Le Priol, Frederik Kunstner, Damien Scieur, Simon Lacoste-Julien:
Convergence Rates for the MAP of an Exponential Family and Stochastic Mirror Descent - an Open Problem. CoRR abs/2111.06826 (2021) - [i56]Yan Zhang, David W. Zhang, Simon Lacoste-Julien, Gertjan J. Burghouts, Cees G. M. Snoek:
Multiset-Equivariant Set Prediction with Approximate Implicit Differentiation. CoRR abs/2111.12193 (2021) - 2020
- [j5]Yassine Yaakoubi, François Soumis, Simon Lacoste-Julien:
Machine learning in airline crew pairing to construct initial clusters for dynamic constraint aggregation. EURO J. Transp. Logist. 9(4): 100020 (2020) - [c44]Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark Schmidt, Simon Lacoste-Julien:
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation. AISTATS 2020: 1375-1386 - [c43]Waïss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel:
Accelerating Smooth Games by Manipulating Spectral Shapes. AISTATS 2020: 1705-1715 - [c42]Jose Gallego-Posada, Ankit Vani, Max Schwarzer, Simon Lacoste-Julien:
GAIT: A Geometric Approach to Information Theory. AISTATS 2020: 2601-2611 - [c41]Waïss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel:
A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Differentiable Games. AISTATS 2020: 2863-2873 - [c40]Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, Simon Lacoste-Julien:
A Closer Look at the Optimization Landscapes of Generative Adversarial Networks. ICLR 2020 - [c39]Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, Simon Lacoste-Julien:
Gradient-Based Neural DAG Learning. ICLR 2020 - [c38]Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas:
Stochastic Hamiltonian Gradient Methods for Smooth Games. ICML 2020: 6370-6381 - [c37]Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton:
Adversarial Example Games. NeurIPS 2020 - [c36]Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, Alexandre Drouin:
Differentiable Causal Discovery from Interventional Data. NeurIPS 2020 - [i55]Waïss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel:
Accelerating Smooth Games by Manipulating Spectral Shapes. CoRR abs/2001.00602 (2020) - [i54]Nicolas Loizou, Sharan Vaswani, Issam H. Laradji, Simon Lacoste-Julien:
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence. CoRR abs/2002.10542 (2020) - [i53]Rémi Le Priol, Reza Babanezhad Harikandeh, Yoshua Bengio, Simon Lacoste-Julien:
An Analysis of the Adaptation Speed of Causal Models. CoRR abs/2005.09136 (2020) - [i52]Sharan Vaswani, Reza Babanezhad, Jose Gallego, Aaron Mishkin, Simon Lacoste-Julien, Nicolas Le Roux:
To Each Optimizer a Norm, To Each Norm its Generalization. CoRR abs/2006.06821 (2020) - [i51]Sharan Vaswani, Frederik Kunstner, Issam H. Laradji, Si Yi Meng, Mark Schmidt, Simon Lacoste-Julien:
Adaptive Gradient Methods Converge Faster with Over-Parameterization (and you can do a line-search). CoRR abs/2006.06835 (2020) - [i50]Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton:
Adversarial Example Games. CoRR abs/2007.00720 (2020) - [i49]Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, Alexandre Drouin:
Differentiable Causal Discovery from Interventional Data. CoRR abs/2007.01754 (2020) - [i48]Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas:
Stochastic Hamiltonian Gradient Methods for Smooth Games. CoRR abs/2007.04202 (2020) - [i47]Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien:
Implicit Regularization in Deep Learning: A View from Function Space. CoRR abs/2008.00938 (2020) - [i46]Yassine Yaakoubi, Simon Lacoste-Julien, François Soumis:
Flight-connection Prediction for Airline Crew Scheduling to Construct Initial Clusters for OR Optimizer. CoRR abs/2009.12501 (2020) - [i45]Yassine Yaakoubi, François Soumis, Simon Lacoste-Julien:
Machine Learning in Airline Crew Pairing to Construct Initial Clusters for Dynamic Constraint Aggregation. CoRR abs/2010.00134 (2020) - [i44]Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien:
On the Convergence of Continuous Constrained Optimization for Structure Learning. CoRR abs/2011.11150 (2020) - [i43]Reza Babanezhad, Simon Lacoste-Julien:
Geometry-Aware Universal Mirror-Prox. CoRR abs/2011.11203 (2020)
2010 – 2019
- 2019
- [j4]Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-Julien, Matthew B. Blaschko, Eugene Belilovsky:
Scattering Networks for Hybrid Representation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(9): 2208-2221 (2019) - [c35]Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-Julien, Ioannis Mitliagkas:
Negative Momentum for Improved Game Dynamics. AISTATS 2019: 1802-1811 - [c34]Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, Simon Lacoste-Julien:
A Variational Inequality Perspective on Generative Adversarial Networks. ICLR (Poster) 2019 - [c33]Tatjana Chavdarova, Gauthier Gidel, François Fleuret, Simon Lacoste-Julien:
Reducing Noise in GAN Training with Variance Reduced Extragradient. NeurIPS 2019: 391-401 - [c32]Gauthier Gidel, Francis R. Bach, Simon Lacoste-Julien:
Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks. NeurIPS 2019: 3196-3206 - [c31]Sharan Vaswani, Aaron Mishkin, Issam H. Laradji, Mark Schmidt, Gauthier Gidel, Simon Lacoste-Julien:
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates. NeurIPS 2019: 3727-3740 - [i42]Gabriel Huang, Hugo Larochelle, Simon Lacoste-Julien:
Centroid Networks for Few-Shot Clustering and Unsupervised Few-Shot Classification. CoRR abs/1902.08605 (2019) - [i41]Tatjana Chavdarova, Gauthier Gidel, François Fleuret, Simon Lacoste-Julien:
Reducing Noise in GAN Training with Variance Reduced Extragradient. CoRR abs/1904.08598 (2019) - [i40]Gauthier Gidel, Francis R. Bach, Simon Lacoste-Julien:
Implicit Regularization of Discrete Gradient Dynamics in Deep Linear Neural Networks. CoRR abs/1904.13262 (2019) - [i39]Sharan Vaswani, Aaron Mishkin, Issam H. Laradji, Mark Schmidt, Gauthier Gidel, Simon Lacoste-Julien:
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates. CoRR abs/1905.09997 (2019) - [i38]Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, Simon Lacoste-Julien:
Gradient-Based Neural DAG Learning. CoRR abs/1906.02226 (2019) - [i37]Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, Simon Lacoste-Julien:
A Closer Look at the Optimization Landscapes of Generative Adversarial Networks. CoRR abs/1906.04848 (2019) - [i36]Waïss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel:
A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games. CoRR abs/1906.05945 (2019) - [i35]Jose Gallego-Posada, Ankit Vani, Max Schwarzer, Simon Lacoste-Julien:
GEAR: Geometry-Aware Rényi Information. CoRR abs/1906.08325 (2019) - [i34]Si Yi Meng, Sharan Vaswani, Issam H. Laradji, Mark Schmidt, Simon Lacoste-Julien:
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation. CoRR abs/1910.04920 (2019) - 2018
- [j3]Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:
Improved Asynchronous Parallel Optimization Analysis for Stochastic Incremental Methods. J. Mach. Learn. Res. 19: 81:1-81:68 (2018) - [j2]Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Learning from Narrated Instruction Videos. IEEE Trans. Pattern Anal. Mach. Intell. 40(9): 2194-2208 (2018) - [c30]Gauthier Gidel, Fabian Pedregosa, Simon Lacoste-Julien:
Frank-Wolfe Splitting via Augmented Lagrangian Method. AISTATS 2018: 1456-1465 - [c29]Gabriel Huang, Hugo Berard, Ahmed Touati, Gauthier Gidel, Pascal Vincent, Simon Lacoste-Julien:
Parametric Adversarial Divergences are Good Task Losses for Generative Modeling. ICLR (Workshop) 2018 - [c28]Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin, Simon Lacoste-Julien:
SEARNN: Training RNNs with global-local losses. ICLR (Poster) 2018 - [c27]Kirill Struminsky, Simon Lacoste-Julien, Anton Osokin:
Quantifying Learning Guarantees for Convex but Inconsistent Surrogates. NeurIPS 2018: 667-675 - [c26]Rémi Le Priol, Alexandre Piché, Simon Lacoste-Julien:
Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields. UAI 2018: 815-824 - [i33]Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:
Improved asynchronous parallel optimization analysis for stochastic incremental methods. CoRR abs/1801.03749 (2018) - [i32]Akram Erraqabi, Aristide Baratin, Yoshua Bengio, Simon Lacoste-Julien:
A3T: Adversarially Augmented Adversarial Training. CoRR abs/1801.04055 (2018) - [i31]Gauthier Gidel, Hugo Berard, Pascal Vincent, Simon Lacoste-Julien:
A Variational Inequality Perspective on Generative Adversarial Nets. CoRR abs/1802.10551 (2018) - [i30]Gauthier Gidel, Fabian Pedregosa, Simon Lacoste-Julien:
Frank-Wolfe Splitting via Augmented Lagrangian Method. CoRR abs/1804.03176 (2018) - [i29]Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Gabriel Huang, Rémi Le Priol, Simon Lacoste-Julien, Ioannis Mitliagkas:
Negative Momentum for Improved Game Dynamics. CoRR abs/1807.04740 (2018) - [i28]Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, Andrea Lodi:
Predicting Solution Summaries to Integer Linear Programs under Imperfect Information with Machine Learning. CoRR abs/1807.11876 (2018) - [i27]Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-Julien, Matthew B. Blaschko, Eugene Belilovsky:
Scattering Networks for Hybrid Representation Learning. CoRR abs/1809.06367 (2018) - [i26]Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-Julien, Ioannis Mitliagkas:
A Modern Take on the Bias-Variance Tradeoff in Neural Networks. CoRR abs/1810.08591 (2018) - [i25]Kirill Struminsky, Simon Lacoste-Julien, Anton Osokin:
Quantifying Learning Guarantees for Convex but Inconsistent Surrogates. CoRR abs/1810.11544 (2018) - 2017
- [c25]Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:
ASAGA: Asynchronous Parallel SAGA. AISTATS 2017: 46-54 - [c24]Gauthier Gidel, Tony Jebara, Simon Lacoste-Julien:
Frank-Wolfe Algorithms for Saddle Point Problems. AISTATS 2017: 362-371 - [c23]Jean-Baptiste Alayrac, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Joint Discovery of Object States and Manipulation Actions. ICCV 2017: 2146-2155 - [c22]Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, Simon Lacoste-Julien:
A Closer Look at Memorization in Deep Networks. ICML 2017: 233-242 - [c21]Fabian Pedregosa, Rémi Leblond, Simon Lacoste-Julien:
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization. NIPS 2017: 56-65 - [c20]Anton Osokin, Francis R. Bach, Simon Lacoste-Julien:
On Structured Prediction Theory with Calibrated Convex Surrogate Losses. NIPS 2017: 302-313 - [i24]Jean-Baptiste Alayrac, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Joint Discovery of Object States and Manipulating Actions. CoRR abs/1702.02738 (2017) - [i23]Anton Osokin, Francis R. Bach, Simon Lacoste-Julien:
On Structured Prediction Theory with Calibrated Convex Surrogate Losses. CoRR abs/1703.02403 (2017) - [i22]Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin, Simon Lacoste-Julien:
SEARNN: Training RNNs with Global-Local Losses. CoRR abs/1706.04499 (2017) - [i21]Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, Simon Lacoste-Julien:
A Closer Look at Memorization in Deep Networks. CoRR abs/1706.05394 (2017) - [i20]Fabian Pedregosa, Rémi Leblond, Simon Lacoste-Julien:
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization. CoRR abs/1707.06468 (2017) - [i19]Gabriel Huang, Gauthier Gidel, Hugo Berard, Ahmed Touati, Simon Lacoste-Julien:
Adversarial Divergences are Good Task Losses for Generative Modeling. CoRR abs/1708.02511 (2017) - [i18]Rémi Le Priol, Alexandre Piché, Simon Lacoste-Julien:
Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields. CoRR abs/1712.08577 (2017) - 2016
- [c19]Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Unsupervised Learning from Narrated Instruction Videos. CVPR 2016: 4575-4583 - [c18]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Beyond CCA: Moment Matching for Multi-View Models. ICML 2016: 458-467 - [c17]Anton Osokin, Jean-Baptiste Alayrac, Isabella Lukasewitz, Puneet Kumar Dokania, Simon Lacoste-Julien:
Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs. ICML 2016: 593-602 - [c16]Pascal Germain, Francis R. Bach, Alexandre Lacoste, Simon Lacoste-Julien:
PAC-Bayesian Theory Meets Bayesian Inference. NIPS 2016: 1876-1884 - [i17]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Beyond CCA: Moment Matching for Multi-View Models. CoRR abs/1602.09013 (2016) - [i16]Pascal Germain, Francis R. Bach, Alexandre Lacoste, Simon Lacoste-Julien:
PAC-Bayesian Theory Meets Bayesian Inference. CoRR abs/1605.08636 (2016) - [i15]Anton Osokin, Jean-Baptiste Alayrac, Isabella Lukasewitz, Puneet Kumar Dokania, Simon Lacoste-Julien:
Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs. CoRR abs/1605.09346 (2016) - [i14]Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:
Asaga: Asynchronous Parallel Saga. CoRR abs/1606.04809 (2016) - [i13]Simon Lacoste-Julien:
Convergence Rate of Frank-Wolfe for Non-Convex Objectives. CoRR abs/1607.00345 (2016) - [i12]Gauthier Gidel, Tony Jebara, Simon Lacoste-Julien:
Frank-Wolfe Algorithms for Saddle Point Problems. CoRR abs/1610.07797 (2016) - 2015
- [c15]Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. AISTATS 2015 - [c14]Visesh Chari, Simon Lacoste-Julien, Ivan Laptev, Josef Sivic:
On pairwise costs for network flow multi-object tracking. CVPR 2015: 5537-5545 - [c13]Simon Lacoste-Julien, Martin Jaggi:
On the Global Linear Convergence of Frank-Wolfe Optimization Variants. NIPS 2015: 496-504 - [c12]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Rethinking LDA: Moment Matching for Discrete ICA. NIPS 2015: 514-522 - [c11]Rahul G. Krishnan, Simon Lacoste-Julien, David A. Sontag:
Barrier Frank-Wolfe for Marginal Inference. NIPS 2015: 532-540 - [c10]Thomas Hofmann, Aurélien Lucchi, Simon Lacoste-Julien, Brian McWilliams:
Variance Reduced Stochastic Gradient Descent with Neighbors. NIPS 2015: 2305-2313 - [i11]Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. CoRR abs/1501.02056 (2015) - [i10]Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Learning from narrated instruction videos. CoRR abs/1506.09215 (2015) - [i9]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Rethinking LDA: moment matching for discrete ICA. CoRR abs/1507.01784 (2015) - [i8]Rahul G. Krishnan, Simon Lacoste-Julien, David A. Sontag:
Barrier Frank-Wolfe for Marginal Inference. CoRR abs/1511.02124 (2015) - [i7]Simon Lacoste-Julien, Martin Jaggi:
On the Global Linear Convergence of Frank-Wolfe Optimization Variants. CoRR abs/1511.05932 (2015) - 2014
- [c9]Aaron Defazio, Francis R. Bach, Simon Lacoste-Julien:
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. NIPS 2014: 1646-1654 - [i6]Aaron Defazio, Francis R. Bach, Simon Lacoste-Julien:
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. CoRR abs/1407.0202 (2014) - [i5]Visesh Chari, Simon Lacoste-Julien, Ivan Laptev, Josef Sivic:
On Pairwise Cost for Multi-Object Network Flow Tracking. CoRR abs/1408.3304 (2014) - 2013
- [c8]Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, Patrick Pletscher:
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs. ICML (1) 2013: 53-61 - [c7]Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Graepel, Zoubin Ghahramani:
SIGMa: simple greedy matching for aligning large knowledge bases. KDD 2013: 572-580 - 2012
- [c6]Francis R. Bach, Simon Lacoste-Julien, Guillaume Obozinski:
On the Equivalence between Herding and Conditional Gradient Algorithms. ICML 2012 - [i4]Francis R. Bach, Simon Lacoste-Julien, Guillaume Obozinski:
On the Equivalence between Herding and Conditional Gradient Algorithms. CoRR abs/1203.4523 (2012) - [i3]Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Graepel, Zoubin Ghahramani:
SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases. CoRR abs/1207.4525 (2012) - [i2]Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, Patrick Pletscher:
Stochastic Block-Coordinate Frank-Wolfe Optimization for Structural SVMs. CoRR abs/1207.4747 (2012) - [i1]Simon Lacoste-Julien, Mark Schmidt, Francis R. Bach:
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method. CoRR abs/1212.2002 (2012) - 2011
- [c5]Simon Lacoste-Julien, Ferenc Huszar, Zoubin Ghahramani:
Approximate inference for the loss-calibrated Bayesian. AISTATS 2011: 416-424
2000 – 2009
- 2008
- [c4]Simon Lacoste-Julien, Fei Sha, Michael I. Jordan:
DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification. NIPS 2008: 897-904 - 2006
- [j1]Benjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan:
Structured Prediction, Dual Extragradient and Bregman Projections. J. Mach. Learn. Res. 7: 1627-1653 (2006) - [c3]Simon Lacoste-Julien, Benjamin Taskar, Dan Klein, Michael I. Jordan:
Word Alignment via Quadratic Assignment. HLT-NAACL 2006 - 2005
- [c2]Benjamin Taskar, Simon Lacoste-Julien, Dan Klein:
A Discriminative Matching Approach to Word Alignment. HLT/EMNLP 2005: 73-80 - [c1]Benjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan:
Structured Prediction via the Extragradient Method. NIPS 2005: 1345-1352
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-30 00:17 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint