default search action
José A. Gámez 0001
Person information
- affiliation: University of Castilla-La Mancha, Spain
Other persons with the same name
- José A. Gámez 0002 — RWTH Aachen University, Germany
Other persons with a similar name
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j78]Enrique González Rodrigo, Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Efficient ensembles of distance-based label ranking trees. Expert Syst. J. Knowl. Eng. 41(4) (2024) - [j77]Jorge D. Laborda, Pablo Torrijos, José Miguel Puerta, José A. Gámez:
Distributed fusion-based algorithms for learning high-dimensional Bayesian Networks: Testing ring and star topologies. Int. J. Approx. Reason. 175: 109302 (2024) - [j76]Jorge D. Laborda, Pablo Torrijos, José Miguel Puerta, José A. Gámez:
Parallel structural learning of Bayesian networks: Iterative divide and conquer algorithm based on structural fusion. Knowl. Based Syst. 296: 111840 (2024) - [j75]Enrique González Rodrigo, Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Label ranking oblique trees. Knowl. Based Syst. 296: 111882 (2024) - [c82]Pablo Torrijos, José A. Gámez, José Miguel Puerta:
Structural Fusion of Bayesian Networks with Limited Treewidth Using Genetic Algorithms. CEC 2024: 1-8 - [c81]Guillermo Fernández, José A. Gámez, José Miguel Puerta, Juan A. Aledo, Jose Maria Alonso-Moral, Alberto Bugarín:
A User Study on the Utility of Context-Aware Explanations for Assisting Data Scientists in Error Analysis of Fuzzy Decision Trees. FUZZ 2024: 1-8 - [c80]Guillermo Fernández, Riccardo Guidotti, Fosca Giannotti, Mattia Setzu, Juan A. Aledo, José A. Gámez, José Miguel Puerta:
FLocalX - Local to Global Fuzzy Explanations for Black Box Classifiers. IDA (2) 2024: 197-209 - [c79]Pablo Torrijos, Juan C. Alfaro, José A. Gámez, José Miguel Puerta:
Federated Learning with Discriminative Naive Bayes Classifier. IDEAL (2) 2024: 328-339 - [i3]Jorge D. Laborda, Pablo Torrijos, José Miguel Puerta, José A. Gámez:
A Ring-Based Distributed Algorithm for Learning High-Dimensional Bayesian Networks. CoRR abs/2409.13314 (2024) - 2023
- [j74]Víctor Pérez-Piqueras, Pablo Bermejo, José A. Gámez:
FEDA-NRP: A fixed-structure multivariate estimation of distribution algorithm to solve the multi-objective Next Release Problem with requirements interactions. Eng. Appl. Artif. Intell. 124: 106555 (2023) - [j73]Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Multi-dimensional Bayesian network classifiers for partial label ranking. Int. J. Approx. Reason. 160: 108950 (2023) - [j72]Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Pairwise learning for the partial label ranking problem. Pattern Recognit. 140: 109590 (2023) - [c78]Pablo Torrijos, José A. Gámez, José Miguel Puerta:
MiniAnDE: A Reduced AnDE Ensemble to Deal with Microarray Data. EANN 2023: 131-143 - [c77]Jorge D. Laborda, Pablo Torrijos, José Miguel Puerta, José A. Gámez:
A Ring-Based Distributed Algorithm for Learning High-Dimensional Bayesian Networks. ECSQARU 2023: 123-135 - [c76]Víctor Pérez-Piqueras, Pablo Bermejo, José A. Gámez:
Hybrid Multi-Objective Relinked GRASP for the constrained Next Release Problem. TrustCom 2023: 2349-2356 - [i2]Pablo Torrijos, José A. Gámez, José Miguel Puerta:
MiniAnDE: a reduced AnDE ensemble to deal with microarray data. CoRR abs/2311.12879 (2023) - 2022
- [j71]Guillermo Fernández, Juan A. Aledo, José Antonio Gámez, José Miguel Puerta:
Factual and Counterfactual Explanations in Fuzzy Classification Trees. IEEE Trans. Fuzzy Syst. 30(12): 5484-5495 (2022) - [c75]Víctor Pérez-Piqueras, Pablo Bermejo López, José A. Gámez:
GRASP-Based Hybrid Search to Solve the Multi-objective Requirements Selection Problem. OLA 2022: 189-200 - [c74]Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Integrating Bayesian network classifiers to deal with the partial label ranking problem. PGM 2022: 337-348 - [c73]Víctor Pérez-Piqueras, Pablo Bermejo López, José A. Gámez:
Estimation of Distribution Algorithms Applied to the Next Release Problem. SOCO 2022: 98-108 - 2021
- [j70]Annalisa Appice, Sergio Escalera, José A. Gámez, Heike Trautmann:
Introduction to the special issue of the ECML PKDD 2021 journal track. Data Min. Knowl. Discov. 35(6): 2540-2541 (2021) - [j69]Enrique González Rodrigo, Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Mixture-Based Probabilistic Graphical Models for the Label Ranking Problem. Entropy 23(4): 420 (2021) - [j68]Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Learning decision trees for the partial label ranking problem. Int. J. Intell. Syst. 36(2): 890-918 (2021) - [j67]José Miguel Puerta, Juan A. Aledo, José A. Gámez, Jorge D. Laborda:
Efficient and accurate structural fusion of Bayesian networks. Inf. Fusion 66: 155-169 (2021) - [j66]Juan A. Aledo, José A. Gámez, Alejandro Rosete:
A highly scalable algorithm for weak rankings aggregation. Inf. Sci. 570: 144-171 (2021) - [j65]Annalisa Appice, Sergio Escalera, José A. Gámez, Heike Trautmann:
Introduction to the special issue of the ECML PKDD 2021 journal track. Mach. Learn. 110(10): 2991-2992 (2021) - [c72]Ricardo Montañana, José A. Gámez, José Miguel Puerta:
STree: A Single Multi-class Oblique Decision Tree Based on Support Vector Machines. CAEPIA 2021: 54-64 - [c71]Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Mixture-Based Probabilistic Graphical Models for the Partial Label Ranking Problem. IDEAL 2021: 277-288 - [c70]Alejandro Zornoza Martínez, Jesus Martínez-Gómez, José A. Gámez:
A Data-Driven Approach for Components Useful Life Estimation in Wind Turbines. SOCO 2021: 37-47 - 2020
- [j64]F. Javier Ramírez, Juan A. Aledo, José A. Gámez, Duc Truong Pham:
Economic modelling of robotic disassembly in end-of-life product recovery for remanufacturing. Comput. Ind. Eng. 142: 106339 (2020) - [c69]Juan C. Alfaro, Juan A. Aledo, José A. Gámez:
Averaging-Based Ensemble Methods for the Partial Label Ranking Problem. HAIS 2020: 410-423
2010 – 2019
- 2019
- [j63]Juan A. Aledo, José A. Gámez, David Molina:
Approaching the rank aggregation problem by local search-based metaheuristics. J. Comput. Appl. Math. 354: 445-456 (2019) - [j62]Enrique González Rodrigo, Juan A. Aledo, José A. Gámez:
spark-crowd: A Spark Package for Learning from Crowdsourced Big Data. J. Mach. Learn. Res. 20: 19:1-19:5 (2019) - [j61]Enrique González Rodrigo, Juan A. Aledo, José A. Gámez:
Scaling up the learning-from-crowds GLAD algorithm using instance-difficulty clustering. Prog. Artif. Intell. 8(3): 389-399 (2019) - [j60]Javier Cózar, Alberto Fernández, Francisco Herrera, José A. Gámez:
A Metahierarchical Rule Decision System to Design Robust Fuzzy Classifiers Based on Data Complexity. IEEE Trans. Fuzzy Syst. 27(4): 701-715 (2019) - [j59]Enrique González Rodrigo, Juan A. Aledo, José A. Gámez:
Machine learning from crowds: A systematic review of its applications. WIREs Data Mining Knowl. Discov. 9(2) (2019) - [c68]Juan Carlos Alfaro Jiménez, Enrique González Rodrigo, Juan A. Aledo, José Antonio Gámez:
A Probabilistic Graphical Model-Based Approach for the Label Ranking Problem. ECSQARU 2019: 351-362 - [c67]José Miguel Puerta, Juan A. Aledo, José Antonio Gámez, Jorge D. Laborda:
Structural Fusion/Aggregation of Bayesian Networks via Greedy Equivalence Search Learning Algorithm. ECSQARU 2019: 432-443 - [c66]Luis de la Ossa, Pablo Bermejo, Juan A. Aledo, José A. Gámez, José Miguel Puerta, Cristina Romero-González, Jacinto Arias, Javier Cózar, Enrique González Rodrigo, Juan Ignacio Alonso-Barba, Jesus Martínez-Gómez:
CiDAEN: An Online Data Science Course. HELMeTO 2019: 113-124 - 2018
- [j58]Juan Ignacio Alonso-Barba, Luis de la Ossa, José A. Gámez, José Miguel Puerta:
On the use of local search heuristics to improve GES-based Bayesian network learning. Appl. Soft Comput. 64: 366-376 (2018) - [j57]Juan A. Aledo, José A. Gámez, Alejandro Rosete:
Approaching rank aggregation problems by using evolution strategies: The case of the optimal bucket order problem. Eur. J. Oper. Res. 270(3): 982-998 (2018) - [j56]Pablo Bermejo, José A. Gámez, José Miguel Puerta:
Adapting the CMIM algorithm for multilabel feature selection. A comparison with existing methods. Expert Syst. J. Knowl. Eng. 35(1) (2018) - [j55]Javier Cózar, Luis delaOssa, José A. Gámez:
Learning compact zero-order TSK fuzzy rule-based systems for high-dimensional problems using an Apriori + local search approach. Inf. Sci. 433-434: 1-16 (2018) - [j54]Juan A. Aledo, José A. Gámez, David Molina, Alejandro Rosete:
Consensus-based journal rankings: A complementary tool for bibliometric evaluation. J. Assoc. Inf. Sci. Technol. 69(7): 936-948 (2018) - [j53]Javier Cózar, Francesco Marcelloni, José A. Gámez, Luis de la Ossa:
Building efficient fuzzy regression trees for large scale and high dimensional problems. J. Big Data 5: 49 (2018) - [c65]Enrique González Rodrigo, Juan A. Aledo, José A. Gámez:
CGLAD: Using GLAD in Crowdsourced Large Datasets. IDEAL (1) 2018: 783-791 - [c64]Jacinto Arias, José A. Gámez, José Miguel Puerta:
Bayesian Network Classifiers Under the Ensemble Perspective. PGM 2018: 1-12 - 2017
- [j52]Juan A. Aledo, José A. Gámez, Alejandro Rosete:
Partial evaluation in Rank Aggregation Problems. Comput. Oper. Res. 78: 299-304 (2017) - [j51]Juan A. Aledo, José A. Gámez, Alejandro Rosete:
Utopia in the solution of the Bucket Order Problem. Decis. Support Syst. 97: 69-80 (2017) - [j50]Javier Cózar, José Miguel Puerta, José A. Gámez:
An Application of Dynamic Bayesian Networks to Condition Monitoring and Fault Prediction in a Sensored System: a Case Study. Int. J. Comput. Intell. Syst. 10(1): 176-195 (2017) - [j49]José A. Gámez, Francisco Herrera, José Miguel Puerta:
Guest Editorial: Recent Trends in Intelligent Systems. Int. J. Intell. Syst. 32(2): 107-108 (2017) - [j48]Juan A. Aledo, José A. Gámez, David Molina:
Tackling the supervised label ranking problem by bagging weak learners. Inf. Fusion 35: 38-50 (2017) - [j47]Amparo Alonso-Betanzos, José A. Gámez, Francisco Herrera, José Miguel Puerta, José C. Riquelme:
Volume, variety and velocity in Data Science. Knowl. Based Syst. 117: 1-2 (2017) - [j46]Jacinto Arias, José A. Gámez, José Miguel Puerta:
Learning distributed discrete Bayesian Network Classifiers under MapReduce with Apache Spark. Knowl. Based Syst. 117: 16-26 (2017) - [j45]Antonio Jesús Díaz-Honrubia, Johan De Praeter, Glenn Van Wallendael, José Luis Martínez, Pedro Cuenca, José Miguel Puerta, José A. Gámez:
CTU splitting algorithm for H.264/AVC and HEVC simultaneous encoding. J. Supercomput. 73(1): 190-202 (2017) - [c63]Javier Cózar, Luis de la Ossa, José A. Gámez:
Generation of first-order TSK rules based on the apriori + search approach. CEC 2017: 1675-1682 - [c62]Rafael Rivera-López, Juana Canul-Reich, José A. Gámez, José Miguel Puerta:
OC1-DE: A Differential Evolution Based Approach for Inducing Oblique Decision Trees. ICAISC (1) 2017: 427-438 - 2016
- [j44]Juan A. Aledo, José A. Gámez, David Molina:
Using extension sets to aggregate partial rankings in a flexible setting. Appl. Math. Comput. 290: 208-223 (2016) - [j43]Juan A. Aledo, José A. Gámez, David Molina:
Using metaheuristic algorithms for parameter estimation in generalized Mallows models. Appl. Soft Comput. 38: 308-320 (2016) - [j42]Jacinto Arias, Jesus Martínez-Gómez, José A. Gámez, Alba Garcia Seco de Herrera, Henning Müller:
Medical image modality classification using discrete Bayesian networks. Comput. Vis. Image Underst. 151: 61-71 (2016) - [j41]Jacinto Arias, José A. Gámez, Thomas D. Nielsen, José Miguel Puerta:
A scalable pairwise class interaction framework for multidimensional classification. Int. J. Approx. Reason. 68: 194-210 (2016) - [j40]Antonio Jesús Díaz-Honrubia, Gabriel Cebrián-Márquez, José Luis Martínez, Pedro Cuenca, José Miguel Puerta, José Antonio Gámez:
Low-complexity heterogeneous architecture for H.264/HEVC video transcoding. J. Real Time Image Process. 12(2): 311-327 (2016) - [j39]Gonzalo Vergara, Juan Ignacio Alonso-Barba, Emilio Soria-Olivas, José A. Gámez, Manuel Domínguez:
Random extreme learning machines to predict electric load in buildings. Prog. Artif. Intell. 5(2): 129-135 (2016) - [j38]Antonio Jesús Díaz-Honrubia, José Luis Martínez, Pedro Cuenca, José Antonio Gámez, José Miguel Puerta:
Adaptive Fast Quadtree Level Decision Algorithm for H.264 to HEVC Video Transcoding. IEEE Trans. Circuits Syst. Video Technol. 26(1): 154-168 (2016) - [c61]Pablo Bermejo, José A. Gámez, José Miguel Puerta, Marco A. Esquivias, Pedro J. Tárraga:
Construction of a Semi-Naive Model to Predict Early Readmission of COPD Patients by Using Quality Care Information. ICDM Workshops 2016: 233-240 - [c60]Juan A. Aledo, José A. Gámez, David Molina, Alejandro Rosete:
FSS-OBOP: Feature subset selection guided by a bucket order consensus ranking. SSCI 2016: 1-8 - [e4]Oscar Luaces, José A. Gámez, Edurne Barrenechea, Alicia Troncoso, Mikel Galar, Héctor Quintián, Emilio Corchado:
Advances in Artificial Intelligence - 17th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2016, Salamanca, Spain, September 14-16, 2016. Proceedings. Lecture Notes in Computer Science 9868, Springer 2016, ISBN 978-3-319-44635-6 [contents] - 2015
- [j37]Jacinto Arias, José A. Gámez, José Miguel Puerta:
Structural Learning of Bayesian Networks Via Constrained Hill Climbing Algorithms: Adjusting Trade-off between Efficiency and Accuracy. Int. J. Intell. Syst. 30(3): 292-325 (2015) - [c59]Antonio Jesús Díaz-Honrubia, José Luis Martínez, Pedro Cuenca, José Antonio Gámez, José Miguel Puerta:
A Data-Driven Probabilistic CTU Splitting Algorithm for Fast H.264/HEVC Video Transcoding. DCC 2015: 449 - [c58]Javier Cózar, Gonzalo Vergara, José A. Gámez, Emilio Soria-Olivas:
Comparing TSK-1 FRBS against SVR for electrical power prediction in buildings. IFSA-EUSFLAT 2015 - [c57]Juan Ignacio Alonso-Barba, Luis de la Ossa, Olivier Regnier-Coudert, John A. W. McCall, José A. Gámez, José Miguel Puerta:
Ant Colony and Surrogate Tree-Structured Models for Orderings-Based Bayesian Network Learning. GECCO 2015: 543-550 - [c56]M. Julia Flores, José A. Gámez:
Impact on Bayesian Networks Classifiers When Learning from Imbalanced Datasets. ICAART (2) 2015: 382-389 - [c55]Gonzalo Vergara, Javier Cózar, Cristina Romero-González, José A. Gámez, Emilio Soria-Olivas:
Comparing ELM Against MLP for Electrical Power Prediction in Buildings. IWINAC (2) 2015: 409-418 - [c54]Jacinto Arias, José A. Gámez, José Miguel Puerta:
Scalable Learning of k-dependence Bayesian Classifiers under MapReduce. TrustCom/BigDataSE/ISPA (2) 2015: 25-32 - [e3]José Miguel Puerta, José A. Gámez, Bernabé Dorronsoro, Edurne Barrenechea, Alicia Troncoso, Bruno Baruque, Mikel Galar:
Advances in Artificial Intelligence - 16th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2015, Albacete, Spain, November 9-12, 2015, Proceedings. Lecture Notes in Computer Science 9422, Springer 2015, ISBN 978-3-319-24597-3 [contents] - 2014
- [j36]Javier Cózar, Luis de la Ossa, José A. Gámez:
Learning TSK-0 linguistic fuzzy rules by means of local search algorithms. Appl. Soft Comput. 21: 57-71 (2014) - [j35]Jens Dalgaard Nielsen, Antonio Salmerón, José A. Gámez:
A tool based on Bayesian networks for supporting geneticists in plant improvement by controlled pollination. Int. J. Approx. Reason. 55(1): 74-83 (2014) - [j34]M. Julia Flores, José A. Gámez, Ana M. Martínez:
Domains of competence of the semi-naive Bayesian network classifiers. Inf. Sci. 260: 120-148 (2014) - [j33]Pablo Bermejo, José A. Gámez, José Miguel Puerta:
Speeding up incremental wrapper feature subset selection with Naive Bayes classifier. Knowl. Based Syst. 55: 140-147 (2014) - [j32]Antonio Fernández, José A. Gámez, Rafael Rumí, Antonio Salmerón:
Data clustering using hidden variables in hybrid Bayesian networks. Prog. Artif. Intell. 2(2-3): 141-152 (2014) - [c53]Antonio Jesús Díaz-Honrubia, José Luis Martínez, José Miguel Puerta, José A. Gámez, Jan De Cock, Pedro Cuenca:
Fast quadtree level decision algorithm for H.264/HEVC transcoder. ICIP 2014: 2497-2501 - [c52]Jacinto Arias, José A. Gámez, Thomas D. Nielsen, José Miguel Puerta:
A Pairwise Class Interaction Framework for Multilabel Classification. Probabilistic Graphical Models 2014: 17-32 - [c51]Javier Cózar, Luis de la Ossa, José A. Gámez:
TSK-0 Fuzzy Rule-Based Systems for High-Dimensional Problems Using the Apriori Principle for Rule Generation. RSCTC 2014: 270-279 - 2013
- [j31]Juan A. Aledo, José A. Gámez, David Molina:
Tackling the rank aggregation problem with evolutionary algorithms. Appl. Math. Comput. 222: 632-644 (2013) - [j30]Juan Ignacio Alonso-Barba, Luis delaOssa, José A. Gámez, José Miguel Puerta:
Scaling up the Greedy Equivalence Search algorithm by constraining the search space of equivalence classes. Int. J. Approx. Reason. 54(4): 429-451 (2013) - [j29]Juan A. Villar, Francisco J. Andujar, José L. Sánchez, Francisco J. Alfaro, José A. Gámez, José Duato:
Obtaining the optimal configuration of high-radix Combined switches. J. Parallel Distributed Comput. 73(9): 1239-1250 (2013) - [c50]Pablo Bermejo, Marta Lucas, José A. Rodríguez-Montes, Pedro J. Tárraga, Javier Lucas, José A. Gámez, José Miguel Puerta:
Single- and Multi-label Prediction of Burden on Families of Schizophrenia Patients. AIME 2013: 115-124 - [c49]Jacinto Arias, José A. Gámez, José Miguel Puerta:
Learning more Accurate Bayesian Networks in the CHC Approach by Adjusting the Trade-Off between Efficiency and Accuracy. CAEPIA 2013: 310-320 - [c48]Juan A. Aledo, José A. Gámez, David Molina:
Computing the Consensus Permutation in Mallows Distribution by Using Genetic Algorithms. IEA/AIE 2013: 102-111 - 2012
- [j28]Jens Dalgaard Nielsen, José A. Gámez, Antonio Salmerón:
Modelling and inference with Conditional Gaussian Probabilistic Decision Graphs. Int. J. Approx. Reason. 53(7): 929-945 (2012) - [j27]Pablo Bermejo, Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Fast wrapper feature subset selection in high-dimensional datasets by means of filter re-ranking. Knowl. Based Syst. 25(1): 35-44 (2012) - [j26]José A. Gámez, Juan L. Mateo, José Miguel Puerta:
One iteration CHC algorithm for learning Bayesian networks: an effective and efficient algorithm for high dimensional problems. Prog. Artif. Intell. 1(4): 329-346 (2012) - [c47]Ana M. Martínez, Geoffrey I. Webb, M. Julia Flores, José A. Gámez:
Non-Disjoint Discretization for Aggregating One-Dependence Estimator Classifiers. HAIS (2) 2012: 151-162 - [c46]Pablo Bermejo, Luis Redondo, Luis delaOssa, Daniel Rodríguez, M. Julia Flores, Carmen Urea, José A. Gámez, Jesus Martínez-Gómez, José Miguel Puerta:
Evaluation of a Thermal-Comfort Control System Using Real Data. KES 2012: 746-755 - [i1]M. Julia Flores, José A. Gámez, Kristian G. Olesen:
Incremental Compilation of Bayesian networks. CoRR abs/1212.2456 (2012) - 2011
- [j25]M. Julia Flores, José A. Gámez, Ana M. Martínez, José Miguel Puerta:
Handling numeric attributes when comparing Bayesian network classifiers: does the discretization method matter? Appl. Intell. 34(3): 372-385 (2011) - [j24]Oscar Cordón, Antonio Fernández-Caballero, José A. Gámez, Frank Hoffmann:
The impact of soft computing for the progress of artificial intelligence. Appl. Soft Comput. 11(2): 1491-1492 (2011) - [j23]José A. Gámez, Juan L. Mateo, José Miguel Puerta:
Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. Data Min. Knowl. Discov. 22(1-2): 106-148 (2011) - [j22]Pablo Bermejo, José A. Gámez, José Miguel Puerta:
Improving the performance of Naive Bayes multinomial in e-mail foldering by introducing distribution-based balance of datasets. Expert Syst. Appl. 38(3): 2072-2080 (2011) - [j21]Pablo Bermejo, José A. Gámez, José Miguel Puerta:
Improving Incremental Wrapper-Based Subset Selection via Replacement and Early Stopping. Int. J. Pattern Recognit. Artif. Intell. 25(5): 605-625 (2011) - [j20]M. Julia Flores, José A. Gámez, Kristian G. Olesen:
Incremental Compilation of Bayesian Networks Based on Maximal Prime Subgraphs. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 19(2): 155-191 (2011) - [j19]Pablo Bermejo, José A. Gámez, José Miguel Puerta:
A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets. Pattern Recognit. Lett. 32(5): 701-711 (2011) - [j18]María José del Jesus, José A. Gámez, Pedro González, José Miguel Puerta:
On the discovery of association rules by means of evolutionary algorithms. WIREs Data Mining Knowl. Discov. 1(5): 397-415 (2011) - [c45]Juan Ignacio Alonso-Barba, Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Scaling Up the Greedy Equivalence Search Algorithm by Constraining the Search Space of Equivalence Classes. ECSQARU 2011: 194-205 - [c44]Arcadio Rubio, José Antonio Gámez:
Flexible learning of k-dependence Bayesian network classifiers. GECCO 2011: 1219-1226 - [c43]Pablo Bermejo, Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Enhancing Incremental Feature Subset Selection in High-Dimensional Databases by Adding a Backward Step. ISCIS 2011: 93-97 - [c42]Javier Cózar, Luis delaOssa, José A. Gámez:
Learning heterogeneus cooperative linguistic fuzzy rules using local search: Enhancing the COR search space. ISDA 2011: 475-480 - [c41]M. Julia Flores, José A. Gámez, Ana M. Martínez, Antonio Salmerón:
Mixture of truncated exponentials in supervised classification: Case study for the naive bayes and averaged one-dependence estimators classifiers. ISDA 2011: 593-598 - [c40]Pablo Bermejo, Luis de la Ossa, José A. Gámez, José Miguel Puerta:
A study on different backward feature selection criteria over high-dimensional databases. ISDA 2011: 1300-1305 - [e2]José Antonio Lozano, José A. Gámez, José A. Moreno:
Advances in Artificial Intelligence - 14th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2011, La Laguna, Spain, November 7-11, 2011. Proceedings. Lecture Notes in Computer Science 7023, Springer 2011, ISBN 978-3-642-25273-0 [contents] - 2010
- [c39]Jesus Martínez-Gómez, José A. Gámez, Ismael García-Varea:
Comparing Cellular and Panmictic Genetic Algorithms for Real-Time Object Detection. EvoApplications (1) 2010: 261-271 - [c38]Luis delaOssa, José A. Gámez, José Miguel Puerta:
Learning cooperative linguistic fuzzy rules using fast local search algorithms. FUZZ-IEEE 2010: 1-8 - [c37]Jesus Martínez-Gómez, Alejandro Jiménez-Picazo, José A. Gámez, Ismael García-Varea:
Combining Image Invariant Features and Clustering Techniques for Visual Place Classification. ICPR Contests 2010: 200-209 - [c36]M. Julia Flores, José A. Gámez, Ana M. Martínez, José Miguel Puerta:
Analyzing the Impact of the Discretization Method When Comparing Bayesian Classifiers. IEA/AIE (1) 2010: 570-579 - [c35]Pablo Bermejo, José A. Gámez, José Miguel Puerta:
Improving Incremental Wrapper-Based Feature Subset Selection by Using Re-ranking. IEA/AIE (1) 2010: 580-589
2000 – 2009
- 2009
- [j17]Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Learning weighted linguistic fuzzy rules by using specifically-tailored hybrid estimation of distribution algorithms. Int. J. Approx. Reason. 50(3): 541-560 (2009) - [j16]María José del Jesus, José A. Gámez, José Miguel Puerta:
Evolutionary and metaheuristics based data mining. Soft Comput. 13(3): 209-212 (2009) - [c34]Luis de la Ossa, José A. Gámez, Juan L. Mateo, José Miguel Puerta:
Avoiding premature convergence in estimation of distribution algorithms. IEEE Congress on Evolutionary Computation 2009: 455-462 - [c33]Pablo Bermejo, José A. Gámez, José Miguel Puerta:
Incremental Wrapper-based subset Selection with replacement: An advantageous alternative to sequential forward selection. CIDM 2009: 367-374 - [c32]M. Julia Flores, José A. Gámez, Jens Dalgaard Nielsen:
The PDG-Mixture Model for Clustering. DaWaK 2009: 378-389 - [c31]M. Julia Flores, José A. Gámez, Ana M. Martínez, José Miguel Puerta:
HODE: Hidden One-Dependence Estimator. ECSQARU 2009: 481-492 - [c30]M. Julia Flores, José A. Gámez, Ana M. Martínez, José Miguel Puerta:
GAODE and HAODE: two proposals based on AODE to deal with continuous variables. ICML 2009: 313-320 - [c29]Pablo Bermejo, Frank Hopfgartner, José A. Gámez, José Miguel Puerta, Joemon M. Jose:
Comparison of balancing techniques for multimedia IR over imbalanced datasets. ISCIS 2009: 674-679 - [c28]Jesus Martínez-Gómez, José A. Gámez, Ismael García-Varea, Vicente Matellán:
Using Genetic Algorithms for Real-Time Object Detection. RoboCup 2009: 215-227 - 2008
- [j15]Luis Rodríguez, Ismael García-Varea, José A. Gámez:
On the application of different evolutionary algorithms to the alignment problem in statistical machine translation. Neurocomputing 71(4-6): 755-765 (2008) - [j14]Gerardo Fernández-Escribano, Jens Bialkowski, José A. Gámez, Hari Kalva, Pedro Cuenca, Luis Orozco-Barbosa, André Kaup:
Low-Complexity Heterogeneous Video Transcoding Using Data Mining. IEEE Trans. Multim. 10(2): 286-299 (2008) - [c27]Luis delaOssa, José A. Gámez, Verónica López:
Improvement of a car racing controller by means of Ant Colony Optimization algorithms. CIG 2008: 365-371 - [c26]José A. Gámez, Juan L. Mateo, José Miguel Puerta:
Improved EDNA (estimation of dependency networks algorithm) using combining function with bivariate probability distributions. GECCO 2008: 407-414 - [c25]Juan Ignacio Alonso-Barba, José A. Gámez, José Miguel Puerta, Ismael García-Varea:
Gait Optimization in AIBO Robots Using an Estimation of Distribution Algorithm. HIS 2008: 150-155 - [c24]José A. Gámez, Ismael García-Varea, Jesus Martínez-Gómez:
An improved Markov-based localization approach by using image quality evaluation. ICARCV 2008: 1236-1241 - [p3]M. Julia Flores, José A. Gámez, Serafín Moral:
Use of Explanation Treesto Describe the State Space of a Probabilistic-Based Abduction Problem. Innovations in Bayesian Networks 2008: 251-280 - 2007
- [j13]Luis de la Ossa, M. Julia Flores, José A. Gámez, Juan L. Mateo, José Miguel Puerta:
Initial breeding value prediction on Manchego sheep by using rule-based systems. Expert Syst. Appl. 33(1): 96-109 (2007) - [c23]José A. Gámez, Juan L. Mateo, José Miguel Puerta:
A Fast Hill-Climbing Algorithm for Bayesian Networks Structure Learning. ECSQARU 2007: 585-597 - [c22]José A. Gámez, Juan L. Mateo, José Miguel Puerta:
Learning Bayesian Classifiers from Dependency Network Classifiers. ICANNGA (1) 2007: 806-813 - [c21]Pablo Bermejo, José A. Gámez, José Miguel Puerta:
Attribute Construction for E-Mail Foldering by Using Wrappered Forward Greedy Search. ICEIS (2) 2007: 247-252 - [c20]José A. Gámez, Juan L. Mateo, José Miguel Puerta:
EDNA: Estimation of Dependency Networks Algorithm. IWINAC (1) 2007: 427-436 - [c19]José A. Gámez, Juan L. Mateo, José Miguel Puerta:
Improving Revisitation Browsers Capability by Using a Dynamic Bookmarks Personal Toolbar. WISE 2007: 643-652 - 2006
- [j12]M. Julia Flores, José A. Gámez, Juan L. Mateo, José Miguel Puerta:
Seleccion genetica para la mejora de la raza ovina manchega mediante tecnicas de Mineria de Datos. Inteligencia Artif. 10(29): 69-77 (2006) - [j11]Peter J. F. Lucas, José A. Gámez, Antonio Salmerón:
Special issue on PGM'04: Second European workshop on probabilistic graphical models 2004. Int. J. Approx. Reason. 42(1-2): 1-3 (2006) - [j10]Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Initial approaches to the application of islands-based parallel EDAs in continuous domains. J. Parallel Distributed Comput. 66(8): 991-1001 (2006) - [c18]Luis delaOssa, José A. Gámez, José Miguel Puerta:
Learning weighted linguistic fuzzy rules with estimation of distribution algorithms. IEEE Congress on Evolutionary Computation 2006: 900-907 - [c17]Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Improvement in the Performance of Island Based Genetic Algorithms Through Path Relinking. Hybrid Metaheuristics 2006: 42-56 - [c16]M. Julia Flores, José A. Gámez, Serafín Moral:
The Independency tree model: a new approach for clustering and factorisation. Probabilistic Graphical Models 2006: 83-90 - [c15]José A. Gámez, Juan L. Mateo, José Miguel Puerta:
Dependency networks based classifiers: learning models by using independence. Probabilistic Graphical Models 2006: 115-122 - [c14]José A. Gámez, Rafael Rumí, Antonio Salmerón:
Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials. Probabilistic Graphical Models 2006: 123-130 - [c13]Luis Rodríguez, Ismael García-Varea, José A. Gámez:
Searching for alignments in SMT. A novel approach based on an Estimation of Distribution Algorithm. WMT@HLT-NAACL 2006: 47-54 - [p2]M. Julia Flores, José A. Gámez, José Miguel Puerta:
Learning Linguistic Fuzzy Rules by Using Estimation of Distribution Algorithms as the Search Engine in the COR Methodology. Towards a New Evolutionary Computation 2006: 259-280 - 2005
- [c12]Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Improving model combination through local search in parallel univariate EDAs. Congress on Evolutionary Computation 2005: 1426-1433 - [c11]M. Julia Flores, José A. Gámez, Serafín Moral:
Abductive Inference in Bayesian Networks: Finding a Partition of the Explanation Space. ECSQARU 2005: 63-75 - [c10]José A. Gámez, José Miguel Puerta:
Constrained Score+(Local)Search Methods for Learning Bayesian Networks. ECSQARU 2005: 161-173 - [c9]Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Initial Approaches to the Application of Islands-Based Parallel EDAs in Continuous Domains. ICPP Workshops 2005: 580-587 - [c8]M. Julia Flores, José A. Gámez:
Breeding Value Classification in Manchego Sheep: A Study of Attribute Selection and Construction. KES (2) 2005: 1338-1346 - 2004
- [c7]J. E. Villalobos, José L. Sánchez, José A. Gámez, José Carlos Sancho, Antonio Robles:
A Methodology to Evaluate the Effectiveness of Traffic Balancing Algorithms. Euro-Par 2004: 891-899 - [c6]Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Migration of Probability Models Instead of Individuals: An Alternative When Applying the Island Model to EDAs. PPSN 2004: 242-252 - 2003
- [j9]José A. Gámez, Antonio Salmerón:
Probabilistic graphical models. Int. J. Intell. Syst. 18(2): 149-151 (2003) - [j8]M. Julia Flores, José A. Gámez:
Triangulation of Bayesian networks by retriangulation. Int. J. Intell. Syst. 18(2): 153-164 (2003) - [c5]Luis de la Ossa, José A. Gámez, José Miguel Puerta:
Heuristic Based Sampling in Estimation of Distribution Algorithms: An Initial Approach. CAEPIA 2003: 384-393 - [c4]Luis M. de Campos, José A. Gámez, Serafín Moral:
Partial Abductive Inference in Bayesian Networks By Using Probability Trees. ICEIS (2) 2003: 83-91 - [c3]M. Julia Flores, José A. Gámez, Kristian G. Olesen:
Incremental compilation of Bayesian networks. UAI 2003: 233-240 - 2002
- [j7]Luis M. de Campos, Juan M. Fernández-Luna, José A. Gámez, José Miguel Puerta:
Ant colony optimization for learning Bayesian networks. Int. J. Approx. Reason. 31(3): 291-311 (2002) - [j6]José A. Gámez, José Miguel Puerta:
Searching for the best elimination sequence in Bayesian networks by using ant colony optimization. Pattern Recognit. Lett. 23(1-3): 261-277 (2002) - [j5]Luis M. de Campos, José A. Gámez, Serafín Moral:
Partial abductive inference in Bayesian belief networks - an evolutionary computation approach by using problem-specific genetic operators. IEEE Trans. Evol. Comput. 6(2): 105-131 (2002) - [c2]M. Julia Flores, José A. Gámez:
Applicability of Estimation of Distribution Algorithms to the Fuzzy Rule Learning Problem: A Preliminary Study. ICEIS 2002: 350-357 - [c1]Luis M. de Campos, José A. Gámez, José Miguel Puerta:
Graphical Models to Causal Discovery from Data. Probabilistic Graphical Models 2002 - [p1]L. M. Campos, José A. Gámez, Pedro Larrañaga, Serafín Moral, Txomin Romero:
Partial Abductive Inference in Bayesian Networks: An Empirical Comparison Between GAs and EDAs. Estimation of Distribution Algorithms 2002: 323-341 - [e1]José A. Gámez, Antonio Salmerón:
First European Workshop on Probabilistic Graphical Models, 6-8 November - 2002 - Cuenca (Spain), Electronic Proceedings. 2002 [contents] - 2001
- [j4]Luis M. de Campos, José A. Gámez, Serafín Moral:
Accelerating chromosome evaluation for partial abductive inference in Bayesian networks by means of explanation set absorption. Int. J. Approx. Reason. 27(2): 121-142 (2001) - [j3]Luis M. de Campos, José A. Gámez, Serafín Moral:
Partial abductive inference in Bayesian belief networks by simulated annealing. Int. J. Approx. Reason. 27(3): 263-283 (2001) - [j2]Luis M. de Campos, José A. Gámez, Serafín Moral:
Simplifying Explanations in Bayesian Belief Networks. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 9(4): 461-490 (2001)
1990 – 1999
- 1999
- [j1]Luis M. de Campos, José A. Gámez, Serafín Moral:
Partial abductive inference in Bayesian belief networks using a genetic algorithm. Pattern Recognit. Lett. 20(11-13): 1211-1217 (1999)
Coauthor Index
aka: Juan Carlos Alfaro Jiménez
aka: Pablo Bermejo López
aka: Luis delaOssa
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 20:49 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint