default search action
Satoshi Shinada
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c45]Yuta Goto, Satoshi Shinada, Yusuke Hirota, Hideaki Furukawa:
LCOS-based Flexible Optical Switch for Heterogeneous SDM Fiber Networks. ICTON 2024: 1-4 - 2023
- [j15]Satoshi Shinada, Yuta Goto, Hideaki Furukawa:
Spatial Mode-Multiplexed Light Source Using Angularly-Multiplexed Volume Holograms. IEICE Trans. Electron. 106(11): 765-773 (2023) - [j14]Ruben S. Luis, Benjamin J. Puttnam, Georg Rademacher, Satoshi Shinada, Tetsuya Hayashi, Tetsuya Nakanishi, Yuki Saito, Tetsu Morishima, Hideaki Furukawa:
Multicore fiber interconnects for multi-terabit spine-leaf datacenter network topologies. J. Opt. Commun. Netw. 15(7): C41-C47 (2023) - [c44]Yuta Goto, Satoshi Shinada, Yusuke Hirota, Hideaki Furukawa:
LCOS based Flexible Spatial Channel Switch for Heterogeneous SDM Fiber Network. OFC 2023: 1-3 - [c43]Yuta Goto, Satoshi Shinada, Yusuke Hirota, Hideaki Furukawa:
Investigation of Spatial Mode Conversion in Flexible Optical Switch Using LCOS-Based Spatial Light Modulator. PSC 2023: 1-3 - 2022
- [c42]Shanting Hu, Xiaodong Gu, Hameeda R. Ibrahim, Masanori Nakahama, Satoshi Shinada, Fumio Koyama:
1060nm Single-mode Transverse Coupled Cavity VCSEL with Surface Relief Engineering for 80Gbps PAM4 Modulation. OFC 2022: 1-3 - [c41]Sjoerd van der Heide, Ruben S. Luis, Benjamin J. Puttnam, Georg Rademacher, Ton Koonen, Satoshi Shinada, Yoshinari Awaji, Hideaki Furukawa, Chigo Okonkwo:
Real-time transmission using a GPU-based Kramers-Kronig coherent receiver. OECC/PSC 2022: 1-3 - [c40]Satoshi Shinada, Yuta Goto, Hideaki Furukawa:
Mode-multiplexed Light Source using Angularly-Multiplexed Volume Holograms. OECC/PSC 2022: 1-3 - 2021
- [c39]Yuta Goto, Ruben S. Luis, Yusuke Hirota, Satoshi Shinada, Sayaka Nagayama, Asa Higashitani, Tetsuya Kobayashi, Ryohei Fukumoto, Hideaki Furukawa:
MEMS mirror-based 1×4 Core Selective Switch for 12-core fiber with low insertion-loss. ECOC 2021: 1-4 - [c38]Hameeda R. Ibrahim, Ahmed M. A. Hassan, Xiodong Gu, Satoshi Shinada, Moustafa Ahmed, Fumio Koyama:
1060nm Single-mode Metal-aperture VCSEL Array with Transverse Resonance and Low Power Consumption below 50 fJ/bit. ECOC 2021: 1-4 - [c37]Ruixiao Li, Xiaodong Gu, Satoshi Shinada, Fumio Koyama:
Compact 1D/2D VCSEL Beam Scanner with Enhanced Field of View and High Resolution. ECOC 2021: 1-4 - [c36]Sjoerd van der Heide, Ruben S. Luis, Benjamin J. Puttnam, Georg Rademacher, Ton Koonen, Satoshi Shinada, Yoshinari Awaji, Hideaki Furukawa, Chigo Okonkwo:
10, 000 km Straight-line Transmission using a Real-time Software-defined GPU-Based Receiver. OFC 2021: 1-3 - [c35]Shanting Hu, Xiaodong Gu, Ahmed M. A. Hassan, Masanori Nakahama, Satoshi Shinada, Fumio Koyama:
Record High Power Single-mode Operation and Beam Steering of VCSEL-Integrated Amplifier/Beam Scanner. OFC 2021: 1-3 - [c34]Hameeda R. Ibrahim, Ahmed M. A. Hassan, Xiodong Gu, Satoshi Shinada, Moustafa Ahmed, Fumio Koyama:
1060nm single-mode metal aperture VCSEL array with transverse resonance for 5km single-mode fiber transmission. OFC 2021: 1-3 - [c33]Ruixiao Li, Zeuku Ho, Xiaodong Gu, Satoshi Shinada, Fumio Koyama:
Solid-state VCSEL beam scanner with ultra-large field of view and high resolution. OFC 2021: 1-3 - [c32]Ruben S. Luís, Benjamin J. Puttnam, Georg Rademacher, Andrea Marotta, Cristian Antonelli, Fabio Graziosi, Antonio Mecozzi, Tetsuya Hayashi, Tetsuya Nakanishi, Satoshi Shinada, Yoshinari Awaji, Hideaki Furukawa, Naoya Wada:
Dynamic Skew in Multi-Core Fibers: From Lab Measurements to Field Trials. OFC 2021: 1-3 - 2020
- [c31]Sjoerd van der Heide, Ruben S. Luis, Benjamin J. Puttnam, Georg Rademacher, Ton Koonen, Satoshi Shinada, Yoshinari Awaji, Chigo Okonkwo, Hideaki Furukawa:
Real-time, Software-Defined, GPU-Based Receiver Field Trial. ECOC 2020: 1-4 - [c30]Ruben S. Luis, Benjamin J. Puttnam, Georg Rademacher, Tobias A. Eriksson, Yusuke Hirota, Satoshi Shinada, Andrew Ross-Adams, Simon Gross, Michael J. Withford, Ryo Maruyama, Kazuhiko Aikawa, Yoshinari Awaji, Hideaki Furukawa, Naoya Wada:
Petabit Class Transmission and Switching. ECOC 2020: 1-4 - [c29]José Manuel Delgado Mendinueta, Samael Sarmiento, José Antonio Altabás, Salvatore Spadaro, Satoshi Shinada, Juan Jose Vegas Olmos, José Antonio Lázaro, Hideaki Furukawa:
NOMA-CAP Modulation Format for Next Generation Converged Fronthaul-Optical Access and Data Center Interconnect Networks. ICTON 2020: 1-4 - [c28]Ruben S. Luis, Benjamin J. Puttnam, Georg Rademacher, Andrea Marotta, Cristian Antonelli, Fabio Graziosi, Antonio Mecozzi, Tetsuya Hayashi, Tetsuya Nakanishi, Satoshi Shinada, Yoshinari Awaji, Hideaki Furukawa, Naoya Wada:
Evaluation of Dynamic Skew on Spooled and Deployed Multicore Fibers using O-Band Signals. OFC 2020: 1-3
2010 – 2019
- 2019
- [c27]Samael Sarmiento, José Manuel Delgado Mendinueta, José Antonio Altabás, Salvatore Spadaro, Satoshi Shinada, Hideaki Furukawa, Juan José Vegas Olmos, José Antonio Lázaro, Naoya Wada:
Optical Power Budget Enhancement in 50 Gb/s IM-DD PONs with NOMA-CAP Modulation and SOA-Based Amplification. ICTON 2019: 1-4 - [c26]Ruben S. Luis, Georg Rademacher, Benjamin J. Puttnam, Satoshi Shinada, Naoya Wada:
Polarization-Multiplexed Intensity-Modulated Signals Using the Kramers-Kronig Relations. OECC/PSC 2019: 1-3 - [c25]Georg Rademacher, Kasper Ingerslev, Ruben S. Luis, Benjamin J. Puttnam, Werner Klaus, Tobias A. Eriksson, Satoshi Shinada, Yoshinari Awaji, Ryu Maruyama, Kazuhike Aikawa, Naoya Wada:
A Scalable SDM Receiver Front-End using Spectral Filtering and LO-Signal Mixing in the Few-Mode Domain. OECC/PSC 2019: 1-3 - [c24]Samael Sarmiento, José Manuel Delgado Mendinueta, José Antonio Altabás, Salvatore Spadaro, Satoshi Shinada, Hideaki Furukawa, Juan José Vegas Olmos, José Antonio Lázaro, Naoya Wada:
Experimental Investigation of 50-90 Gb/s IM-DD NOMA-CAP Modulation for Short Range Optical Transmission Applications. OECC/PSC 2019: 1-3 - [c23]Taijun Shiba, Atsushi Okamoto, Tomohiro Maeda, Taketoshi Takahata, Satoshi Shinada, Naoya Wada:
Mode Selective Switch Using Volume Holograms and a Spatial Light Modulator. OECC/PSC 2019: 1-3 - [c22]Satoshi Shinada, Taijun Shiba, Tomohiro Maeda, Taketoshi Takahata, Atsushi Okamoto, Naoya Wada:
Characterization of Spatial-Mode Demultiplexer using 1550-nm-band Angularly Multiplexed Volume Holograms. OECC/PSC 2019: 1-3 - [c21]Masaki Shiraiwa, Hideaki Furukawa, Yusuke Hirota, Satoshi Shinada, Yoshinari Awaji, Naoya Wada:
Multi-Signal Power Collective Equalization for Dynamic Optical Path Operation. OECC/PSC 2019: 1-3 - 2018
- [c20]Ruben S. Luis, Georg Rademacher, Benjamin J. Puttnam, Satoshi Shinada, Hideaki Furukawa, Ryo Maruyama, Kazuhiko Aikawa, Naoya Wada:
A Coherent Kramers-Kronig Receiver for 3-Mode Few-Mode Fiber Transmission. ECOC 2018: 1-3 - [c19]Satoshi Shinada, Shimpei Shimizu, Taijun Shiba, Taketoshi Takahata, Atsushi Okamoto, Naoya Wada:
Spatial-Mode Demultiplexer Using 1550-Nm-Band Angularly Multiplexed Volume Holograms. ECOC 2018: 1-3 - [c18]Yusuke Hirota, Jose Manuel Delgado Mendinueta, Satoshi Shinada, Ruben S. Luis, Hideaki Furukawa, Hiroaki Harai, Naoya Wada:
Impact of Fractionally Spatial Super-channel Time-slotted Switch Architecture Design. OFC 2018: 1-3 - [c17]Jose Manuel Delgado Mendinueta, Satoshi Shinada, Yusuke Hirota, Ruben S. Luis, Hideaki Furukawa, Naoya Wada:
83.33 Tb/s Coherent PDM-8PSK SDM-TDM Spatial Super-channel and High-speed Core-joint Switching System. OFC 2018: 1-3 - [c16]Kasper Ingerslev, Georg Rademacher, Ruben S. Luís, Benjamin J. Puttnam, Werner Klaus, Satoshi Shinada, Yoshinari Awaji, Karsten Rottwitt, Toshio Morioka, Leif Katsuo Oxenløwe, Naoya Wada:
Free-Space Few-Mode Kramers-Kronig Receiver. PSC 2018: 1-3 - [c15]Jose Manuel Delgado Mendinueta, Satoshi Shinada, Yusuke Hirota, Ruben S. Luís, Hideaki Furukawa, Naoya Wada:
Optical Switching System for Next Generation Data Center Networks with Time-division Spatial Super-channels and Core-joint Optical Switches. PSC 2018: 1-3 - 2017
- [j13]Jose Manuel Delgado Mendinueta, Hideaki Furukawa, Satoshi Shinada, Naoya Wada:
Numerical Investigation of a Multi-Rate Coherent Burst-Mode PDM-QPSK Optical Receiver for Flexible Optical Networks. IEICE Trans. Commun. 100-B(10): 1758-1764 (2017) - [c14]Jose Manuel Delgado Mendinueta, Satoshi Shinada, Ruben S. Luis, Yusuke Hirota, Hideaki Furukawa, Hiroaki Harai, Naoya Wada:
Experimental Demonstration of a 53 Tb/s Coherent SDM-TDM Add/Drop/Through Optical Network with Time-division Spatial Super-channels and High-speed Joint Switching System. ECOC 2017: 1-3 - [c13]Jose Manuel Delgado Mendinueta, Satoshi Shinada, Hideaki Furukawa, Naoya Wada:
Ultra-high-capacity optical packet switching networks with coherent polarization division multiplexing modulation formats and related technologies. ICTON 2017: 1-4 - [c12]Naoya Wada, Hideaki Furukawa, Jose Manuel Delgado Mendinueta, Satoshi Shinada:
Optical integrated network technologies for coping with traffic fluctuation and service diversification. ICTON 2017: 1-4 - 2015
- [c11]Hideaki Furukawa, Jose Manuel Delgado Mendinueta, Toru Segawa, Ryo Takahashi, Hiroaki Harai, Satoshi Shinada, Naoya Wada:
100 Gbps multi-format optical packet and circuit switching node with transparent optical switch and burst-mode amplifier. ECOC 2015: 1-3 - [c10]Satoshi Shinada, Ruben S. Luis, Hideaki Furukawa, Naoya Wada:
Demonstration of multi-hop optical packet switching and transmission using SOA-based optical packet switches. OFC 2015: 1-3 - 2014
- [c9]Guo-Wei Lu, Andre A. C. Albuquerque, Benjamin J. Puttnam, Takahide Sakamoto, Miguel V. Drummond, Rogério Nogueira, Atsushi Kanno, Satoshi Shinada, Naoya Wada, Tetsuya Kawanishi:
Pump-linewidth-tolerant optical data exchange between 16QAM and QPSK with 50-GHz channel-spacing using coherent DFB pump. ECOC 2014: 1-3 - [c8]Satoshi Shinada, Jose Manuel Delgado Mendinueta, Ruben S. Luis, Naoya Wada:
Operation of a 12.8 Tbit/s DWDM polarization division multiplexing 16-QAM optical packet switching node after 50-km of fiber transmission. ECOC 2014: 1-3 - [c7]Hideaki Furukawa, Satoshi Shinada, Takaya Miyazawa, Takahiro Hirayama, Naoya Wada, Hiroaki Harai:
Demonstration and network scalability analysis of 8-fiber-delay-line SOA-based optical buffer embedded optical packet switching. OFC 2014: 1-3 - [c6]Satoshi Shinada, Jose Manuel Delgado Mendinueta, Naoya Wada:
Over 10-Tbit/s/port optical packet switching using polarization-multiplexed DWDM/16-QAM packets. OFC 2014: 1-3 - 2013
- [c5]Daniel Mazroa, Áron Szabó, Tibor Cinkler, Benjamin J. Puttnam, Satoshi Shinada, Naoya Wada:
Modelling all-optical phase-sensitive BPSK and QPSK regenerators. ICC 2013: 3981-3985 - [c4]Andre A. C. Albuquerque, Benjamin J. Puttnam, Miguel V. Drummond, Áron Szabó, Daniel Mazroa, Satoshi Shinada, Naoya Wada, Rogério N. Nogueira:
Investigation of black-box phase regeneration using single bi-directional PPLN waveguide. OFC/NFOEC 2013: 1-3 - [c3]Ruben S. Luis, Hideaki Furukawa, Satoshi Shinada, Naoya Wada:
Optical link planning guidelines for a hybrid packet and circuit integrated network. OFC/NFOEC 2013: 1-3 - [c2]Satoshi Shinada, Hideaki Furukawa, Naoya Wada:
Demonstration of flexible optical buffer based on 1×32 optical switches and fiber-sheet delay lines. OFC/NFOEC 2013: 1-3 - [c1]Yuki Yoshida, Takahiro Kodama, Satoshi Shinada, Naoya Wada, Ken-ichi Kitayama:
Fixed-length elastic-capacity OFDM payload packet: Concept and demonstration. OFC/NFOEC 2013: 1-3 - 2012
- [j12]Yutaro Katano, Satoshi Shinada, Shinya Nakajima, Tetsuya Kawanishi, Hirochika Nakajima:
Monolithic mode-locked erbium-doped LiNbO3 waveguide laser with dielectric multilayer mirror. IEICE Electron. Express 9(4): 245-249 (2012) - 2011
- [j11]Mitsuko Mieno, Hiroki Watanabe, Satoshi Shinada, Naoya Wada, Hirochika Nakajima:
Variable generation of optical BPSK code labels using LiNbO3 modulators. IEICE Electron. Express 8(19): 1614-1620 (2011)
2000 – 2009
- 2007
- [j10]So Kogahara, Satoshi Shinada, Shinya Nakajima, Tetsuya Kawanishi, Hirochika Nakajima, Masayuki Izutsu:
Optical amplification characteristics of Ti-diffused waveguides on Erbium-doped LiNbO3 crystal. IEICE Electron. Express 4(4): 134-139 (2007) - [j9]Ryo Takigawa, Eiji Higurashi, Tadatomo Suga, Satoshi Shinada, Tetsuya Kawanishi:
Low-Temperature Au-to-Au Bonding for LiNbO3/Si Structure Achieved in Ambient Air. IEICE Trans. Electron. 90-C(1): 145-146 (2007) - [j8]Satoshi Shinada, Tetsuya Kawanishi, Masayuki Izutsu:
A Resonant Type LiNbO3 Optical Modulator Array with Micro-Strip Antennas. IEICE Trans. Electron. 90-C(5): 1090-1095 (2007) - 2006
- [j7]Satoshi Shinada, Tetsuya Kawanishi, Takahide Sakamoto, Masayuki Izutsu:
An optical grating filter dry-etched on a LiNbO3 substrate. IEICE Electron. Express 3(14): 347-352 (2006) - 2005
- [j6]Takahisa Fujita, Tetsuya Kawanishi, Kaoru Higuma, Junichiro Ichikawa, Satoshi Shinada, Takahide Sakamoto, Masayuki Izutsu:
10Gbit/s FSK transmission over 95km SMF using a LiNbO3 modulator. IEICE Electron. Express 2(1): 32-36 (2005) - [j5]Tetsuya Kawanishi, Satoshi Oikawa, Kiichi Yoshiara, Satoshi Shinada, Takahide Sakamoto, Masayuki Izutsu:
Integrated reciprocating optical modulator using phase-shifted fiber Bragg grating. IEICE Electron. Express 2(2): 49-53 (2005) - [j4]Takahide Sakamoto, Tetsuya Kawanishi, Satoshi Shinada, Masayuki Izutsu:
Amplitude modulation on millimeter-wave signal with low driving voltage using reciprocating optical modulator. IEICE Electron. Express 2(7): 239-243 (2005) - [j3]Jianxiao Chen, Tetsuya Kawanishi, Kaoru Higuma, Satoshi Shinada, William S. C. Chang, Masayuki Izutsu, Paul K. L. Yu:
Programmable Coupler Ladder Based on Lithium Niobate Y-Junction Reflector. IEICE Trans. Electron. 88-C(3): 379-384 (2005) - 2004
- [j2]Tetsuya Kawanishi, Kaoru Higuma, Takahisa Fujita, Junichiro Ichikawa, Satoshi Shinada, Takahide Sakamoto, Masayuki Izutsu:
Optical FSK/IM Signal Generation Using an Integrated Optical FSK Modulator. IEICE Electron. Express 1(3): 69-72 (2004) - [j1]Tetsuya Kawanishi, Takahide Sakamoto, Satoshi Shinada, Masayuki Izutsu:
Optical frequency comb generator using optical fiber loops with single-sideband modulation. IEICE Electron. Express 1(8): 217-221 (2004)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-15 20:47 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint