default search action
Computer-Aided Diagnosis 2018: Houston, Texas, USA
- Nicholas Petrick, Kensaku Mori:
Medical Imaging 2018: Computer-Aided Diagnosis, Houston, Texas, USA, 10-15 February 2018. SPIE Proceedings 10575, SPIE 2018
Lung I and Liver
- Hirohisa Oda, Holger R. Roth, Kanwal K. Bhatia, Masahiro Oda, Takayuki Kitasaka, Shingo Iwano, Hirotoshi Honma, Hirotsugu Takabatake, Masaki Mori, Hiroshi Natori, Julia A. Schnabel, Kensaku Mori:
Dense volumetric detection and segmentation of mediastinal lymph nodes in chest CT images. 1057502 - Salma Dammak, David Palma, Sarah A. Mattonen, Suresh Senan, Aaron D. Ward:
Early detection of lung cancer recurrence after stereotactic ablative radiation therapy: radiomics system design. 1057503 - Aviel Blumenfeld, Eli Konen, Hayit Greenspan:
Pneumothorax detection in chest radiographs using convolutional neural network. 1057504 - Sebastian Roberto Tarando, Catalin I. Fetita, Young-Wouk Kim, Hyoun Cho, Pierre-Yves Brillet:
Boosting CNN performance for lung texture classification using connected filtering. 1057505 - Evgeny Bal, Eyal Klang, Michal Amitai, Hayit Greenspan:
Automatic liver volume segmentation and fibrosis classification. 1057506
Radiomics
- Ashirbani Saha, Michael R. Harowicz, Lars J. Grimm, Connie E. Kim, Ruth Walsh, Sujata V. Ghate, Maciej A. Mazurowski:
Association of high proliferation marker Ki-67 expression with DCEMR imaging features of breast: a large scale evaluation. 1057507 - Juhun Lee, Robert M. Nishikawa, Gustavo K. Rohde:
Detecting mammographically-occult cancer in women with dense breasts using Radon Cumulative Distribution Transform: a preliminary analysis. 1057508 - Saima Rathore, Spyridon Bakas, Hamed Akbari, Gaurav Shukla, Martin Rozycki, Christos Davatzikos:
Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques. 1057509 - Heather M. Whitney, Karen Drukker, Alexandra Edwards, John Papaioannou, Maryellen L. Giger:
Robustness of radiomic breast features of benign lesions and luminal A cancers across MR magnet strengths. 105750A - Prathyush Chirra, Patrick Leo, Michael Yim, B. Nicolas Bloch, Ardeshir R. Rastinehad, Andrei S. Purysko, Mark Rosen, Anant Madabhushi, Satish Viswanath:
Empirical evaluation of cross-site reproducibility in radiomic features for characterizing prostate MRI. 105750B - Kavya Ravichandran, Nathaniel Braman, Andrew Janowczyk, Anant Madabhushi:
A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI. 105750C
Brain I
- Lasitha Vidyaratne, Mahbubul Alam, Zeina A. Shboul, Khan M. Iftekharuddin:
Deep learning and texture-based semantic label fusion for brain tumor segmentation. 105750D - Behrouz Saghafi, Gowtham Murugesan, Elizabeth M. Davenport, Benjamin C. Wagner, Jillian Urban, Mireille Kelley, Derek Jones, Alexander Powers, Christopher T. Whitlow, Joel D. Stitzel, Joseph A. Maldjian, Albert Montillo:
Quantifying the association between white matter integrity changes and subconcussive head impact exposure from a single season of youth and high school football using 3D convolutional neural networks. 105750E - Gowtham Krishnan Murugesan, Behrouz Saghafi, Elizabeth M. Davenport, Benjamin C. Wagner, Jillian Urban-Hobson, Mireille Kelley, Derek Jones, Alex Powers, Christopher T. Whitlow, Joel D. Stitzel, Joseph A. Maldjian, Albert Montillo:
Single season changes in resting state network power and the connectivity between regions distinguish head impact exposure level in high school and youth football players. 105750F - Liane S. Canas, Benjamin C. Yvernault, David M. Cash, Erika Molteni, Tom Veale, Tammie L. S. Benzinger, Sébastien Ourselin, Simon Mead, Marc Modat:
Gaussian Processes with optimal kernel construction for neuro-degenerative clinical onset prediction. 105750G - P. P. J. H. Langenhuizen, M. J. W. Legters, Svitlana Zinger, H. B. Verheul, S. Leenstra, Peter H. N. de With:
MRI textures as outcome predictor for Gamma Knife radiosurgery on vestibular schwannoma. 105750H - Xiaonan Liu, Kewei Chen, Teresa Wu, David Weidman, Fleming Lure, Jing Li:
ADMultiImg: a novel missing modality transfer learning based CAD system for diagnosis of MCI due to AD using incomplete multi-modality imaging data. 105750I - Luca Giancardo, Timothy M. Ellmore, Jessika Suescun, Laura Ocasio, Arash Kamali, Roy Riascos-Castaneda, Mya C. Schiess:
Longitudinal connectome-based predictive modeling for REM sleep behavior disorder from structural brain connectivity. 105750J
Musculoskeletal and Skin
- Pak-Hei Yeung, York-Kiat Tan, Shuoyu Xu:
Automated synovium segmentation in doppler ultrasound images for rheumatoid arthritis assessment. 105750K - Christine Bakhous, Benjamin Aubert, Carlos Vázquez, Thierry Cresson, Stefan Parent, Jacques A. de Guise:
Automatic pedicles detection using convolutional neural network in a 3D spine reconstruction from biplanar radiographs. 105750L - Shuang Liu, Jessica González, Javier Zulueta, Juan P. de-Torres, David F. Yankelevitz, Claudia I. Henschke, Anthony P. Reeves:
Fully automated bone mineral density assessment from low-dose chest CT. 105750M - Jianing Wang, Fuyao Chen, Laura E. Dellalana, Madan H. Jagasia, Eric R. Tkaczyk, Benoit M. Dawant:
Segmentation of skin lesions in chronic graft versus host disease photographs with fully convolutional networks. 105750N - Pegah Kharazmi, Sunil Kalia, Harvey Lui, Z. Jane Wang, Tim K. Lee:
Computer-aided detection of basal cell carcinoma through blood content analysis in dermoscopy images. 105750O
Breast I
- Morteza Heidari, Abolfazl Zargari Khuzani, Gopichandh Danala, Yuchen Qiu, Bin Zheng:
Improving performance of breast cancer risk prediction using a new CAD-based region segmentation scheme. 105750P - Ravi K. Samala, Heang-Ping Chan, Lubomir M. Hadjiiski, Mark A. Helvie, Caleb Richter, Kenny H. Cha:
Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. 105750Q - Rui Hou, Bibo Shi, Lars J. Grimm, Maciej A. Mazurowski, Jeffrey R. Marks, Lorraine M. King, Carlo C. Maley, Eun-Sil Shelley Hwang, Joseph Y. Lo:
Improving classification with forced labeling of other related classes: application to prediction of upstaged ductal carcinoma in situ using mammographic features. 105750R - Hui Li, Kayla R. Mendel, John H. Lee, Li Lan, Maryellen L. Giger:
Deep learning in breast cancer risk assessment: evaluation of fine-tuned convolutional neural networks on a clinical dataset of FFDMs. 105750S - Kayla R. Mendel, Hui Li, Deepa Sheth, Maryellen L. Giger:
Transfer learning with convolutional neural networks for lesion classification on clinical breast tomosynthesis. 105750T - Jun Zhang, Ashirbani Saha, Zhe Zhu, Maciej A. Mazurowski:
Breast tumor segmentation in DCE-MRI using fully convolutional networks with an application in radiogenomics. 105750U
Cardiac, Vessels, and Novel Applications
- Qing Cao, Alexander Broersen, Pieter H. Kitslaar, Boudewijn P. F. Lelieveldt, Jouke Dijkstra:
A quality score for coronary artery tree extraction results. 105750V - Shubham Chechani, Rahul Suresh, Kedar A. Patwardhan:
Aortic root segmentation in 4D transesophageal echocardiography. 105750W - Hidenobu Suzuki, Yoshiki Kawata, Noboru Niki, Toshihiko Sugiura, Nobuhiro Tanabe, Masahiko Kusumoto, Kenji Eguchi, Masahiro Kaneko:
Automated assessment of aortic and main pulmonary arterial diameters using model-based blood vessel segmentation for predicting chronic thromboembolic pulmonary hypertension in low-Dose CT lung screening. 105750X - Udaysankar Chockanathan, Adora M. DSouza, Anas Z. Abidin, Giovanni Schifitto, Axel Wismüller:
Identification and functional characterization of HIV-associated neurocognitive disorders with large-scale Granger causality analysis on resting-state functional MRI. 105750Z
Keynote and Eye
- Zhihong Hu, Ziyuan Wang, SriniVas R. Sadda:
Automated segmentation of geographic atrophy using deep convolutional neural networks. 1057511 - Behnam Askarian, Fatemehsadat Tabei, Amin Askarian, Jo Woon Chong:
An affordable and easy-to-use diagnostic method for keratoconus detection using a smartphone. 1057512
Colon and Prostate
- Chengliang Wang, Zhuo Luo, Xiaoqi Liu, Jianying Bai, Guobin Liao:
Detection of protruding lesion in wireless capsule endoscopy videos of small intestine. 1057513 - Zhenchao Tang, Zhenyu Liu, Xiaoyan Zhang, Yanjie Shi, Shou Wang, Mengjie Fang, Yingshi Sun, Enqing Dong, Jie Tian:
Radiomics analysis of DWI data to identify the rectal cancer patients qualified for local excision after neoadjuvant chemoradiotherapy. 1057514 - Ryan Alfano, D. Soetemans, Glenn S. Bauman, Eli Gibson, Mena Gaed, Madeleine Moussa, Jose A. Gomez, Joseph L. Chin, Stephen E. Pautler, Aaron D. Ward:
Development of a computer aided diagnosis model for prostate cancer classification on multi-parametric MRI. 1057515 - Hayato Itoh, Yuichi Mori, Masashi Misawa, Masahiro Oda, Shin-ei Kudo, Kensaku Mori:
Cascade classification of endocytoscopic images of colorectal lesions for automated pathological diagnosis. 1057516 - Bo Chen, Lihong C. Li, Huafeng Wang, Xinzhou Wei, Shan Huang, Wensheng Chen, Zhengrong Liang:
A new fractional order derivative based active contour model for colon wall segmentation. 1057517 - Janne J. Näppi, Toru Hironaka, Hiroyuki Yoshida:
Detection of colorectal masses in CT colonography: application of deep residual networks for differentiating masses from normal colon anatomy. 1057518
Head and Neck
- Annika Hänsch, Michael Schwier, Tobias Gass, Tomasz Morgas, Benjamin Haas, Jan Klein, Horst K. Hahn:
Comparison of different deep learning approaches for parotid gland segmentation from CT images. 1057519 - Çaglar Senaras, Aaron C. Moberly, Theodoros Teknos, Garth Essig, Charles Elmaraghy, Nazhat Taj-Schaal, Lianbo Yu, Metin N. Gurcan:
Detection of eardrum abnormalities using ensemble deep learning approaches. 105751A - Ajay Patel, Rashindra Manniesing:
A convolutional neural network for intracranial hemorrhage detection in non-contrast CT. 105751B - Kamal Jnawali, Mohammad R. Arbabshirani, Navalgund Rao, Aalpen A. Patel:
Deep 3D convolution neural network for CT brain hemorrhage classification. 105751C - K. Standvoss, T. Crijns, L. Goerke, D. Janssen, Simon Kern, T. van Niedek, J. van Vugt, N. Alfonso Burgos, Emma J. Gerritse, J. Mol, D. van de Vooren, Mohsen Ghafoorian, Thomas L. A. van den Heuvel, Rashindra Manniesing:
Cerebral microbleed detection in traumatic brain injury patients using 3D convolutional neural networks. 105751D
Lung II
- Sivaramakrishnan Rajaraman, Sameer K. Antani, Sema Candemir, Zhiyun Xue, Joseph Abuya, Marc D. Kohli, Philip O. Alderson, George R. Thoma:
Comparing deep learning models for population screening using chest radiography. 105751E - Phawis Thammasorn, W. Wu, Larry A. Pierce, S. N. Pipavath, P. D. Lampe, A. M. Houghton, David R. Haynor, W. Art Chaovalitwongse, Paul E. Kinahan:
Deep-learning derived features for lung nodule classification with limited datasets. 105751F - Yoshiki Kawata, Noboru Niki, Masahiko Kusumoto, Hironobu Ohmatsu, Keiju Aokage, Genichiro Ishii, Yuji Matsumoto, Takaaki Tsuchida, Kenji Eguchi, Masahiro Kaneko:
Prognostic importance of pleural attachment status measured by pretreatment CT images in patients with stage IA lung adenocarcinoma: Measurement of the ratio of the interface between nodule and neighboring pleura to nodule surface area. 105751G - Chuan Zhou, Hongliu Sun, Heang-Ping Chan, Aamer Chughtai, Jun Wei, Lubomir M. Hadjiiski, Ella A. Kazerooni:
Differentiating invasive and pre-invasive lung cancer by quantitative analysis of histopathologic images. 105751H - Sindhu Ramachandran, Jose George, Shibon Skaria, Varun V. V.:
Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans. 105751I - Mohammadreza Negahdar, David Beymer, Tanveer F. Syeda-Mahmood:
Automated volumetric lung segmentation of thoracic CT images using fully convolutional neural network. 105751J
Quantitative
- Joseph J. Foy, Prerana Mitta, Lauren R. Nowosatka, Kayla R. Mendel, Hui Li, Maryellen L. Giger, Hania A. Al-Hallaq, Samuel G. Armato III:
Variations in algorithm implementation among quantitative texture analysis software packages. 105751K - M. Wasil Wahi-Anwar, Nastaran Emaminejad, John M. Hoffman, Grace H. Kim, Matthew S. Brown, Michael F. McNitt-Gray:
Towards quantitative imaging: stability of fully-automated nodule segmentation across varied dose levels and reconstruction parameters in a low-dose CT screening patient cohort. 105751L - Qi Wei, Yinhao Ren, Rui Hou, Bibo Shi, Joseph Y. Lo, Lawrence Carin:
Anomaly detection for medical images based on a one-class classification. 105751M - Jayasree Chakraborty, Alessandra Pulvirenti, Rikiya Yamashita, Abhishek Midya, Mithat Gönen, David S. Klimstra, Diane L. Reidy, Peter J. Allen, Richard K. G. Do, Amber L. Simpson:
Quantitative CT analysis for the preoperative prediction of pathologic grade in pancreatic neuroendocrine tumors. 105751N - Rachel B. Ger, Shouhao Zhou, Pai-Chun Melinda Chi, David L. Goff, Lifei Joy Zhang, Hannah J. Lee, Clifton D. Fuller, Rebecca M. Howell, Heng Li, R. Jason Stafford, Laurence E. Court, Dennis S. Mackin:
Quantitative image feature variability amongst CT scanners with a controlled scan protocol. 105751O
Brain II
- Daisuke Sato, Shouhei Hanaoka, Yukihiro Nomura, Tomomi Takenaga, Soichiro Miki, Takeharu Yoshikawa, Naoto Hayashi, Osamu Abe:
A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes. 105751P - Midas Meijs, Rashindra Manniesing:
Artery and vein segmentation of the cerebral vasculature in 4D CT using a 3D fully convolutional neural network. 105751Q - Ronald M. Juarez-Chambi, Carmen Kut, Jesus Rico-Jimenez, Daniel U. Campos-Delgado, Alfredo Quinones-Hinojosa, Xingde Li, Javier A. Jo:
Detection of brain tumor margins using optical coherence tomography. 105751R - Viktor Wegmayr, Sai Aitharaju, Joachim M. Buhmann:
Classification of brain MRI with big data and deep 3D convolutional neural networks. 105751S - Alex Karargyros, Tanveer F. Syeda-Mahmood:
Saliency U-Net: A regional saliency map-driven hybrid deep learning network for anomaly segmentation. 105751T - Liyun Tu, Antonio R. Porras, Albert Oh, Natasha Leporé, Manuel Mastromanolis, Deki Tsering, Beatriz Paniagua, Andinet Enquobahrie, Robert T. Keating, Gary F. Rogers, Marius George Linguraru:
Radiation-free quantification of head malformations in craniosynostosis patients from 3D photography. 105751U
Other Organs
- Kenny H. Cha, Lubomir M. Hadjiiski, Heang-Ping Chan, Ravi K. Samala, Richard H. Cohan, Elaine M. Caoili, Alon Z. Weizer, Ajjai Alva:
Bladder cancer treatment response assessment in CT urography using two-channel deep-learning network. 105751V - Nikhil S. Narayan, Srinivasan Sivanandan, Srinivas Kudavelly, Kedar A. Patwardhan, G. A. Ramaraju:
Automated detection and segmentation of follicles in 3D ultrasound for assisted reproduction. 105751W - Carina Pereira, Manjiri Dighe, Adam M. Alessio:
Comparison of machine learned approaches for thyroid nodule characterization from shear wave elastography images. 105751X - Marshall N. Gordon, Kenny H. Cha, Lubomir M. Hadjiiski, Heang-Ping Chan, Richard H. Cohan, Elaine M. Caoili, Chintana Paramagul, Ajjai Alva, Alon Z. Weizer:
Bladder cancer treatment response assessment with radiomic, clinical and radiologist semantic features. 105751Y - Pooneh R. Tabrizi, Awais Mansoor, Elijah Biggs, James Jago, Marius George Linguraru:
Automatic detection of kidney in 3D pediatric ultrasound images using deep neural networks. 105751Z
Breast II
- Caleb D. Richter, Ravi K. Samala, Heang-Ping Chan, Lubomir M. Hadjiiski, Kenny H. Cha:
Generalization error analysis: deep convolutional neural network in mammography. 1057520 - Ravi K. Samala, Heang-Ping Chan, Lubomir M. Hadjiiski, Mark A. Helvie, Caleb Richter, Kenny H. Cha:
Compression of deep convolutional neural network for computer-aided diagnosis of masses in digital breast tomosynthesis. 1057521 - Seong Tae Kim, Hakmin Lee, Hak Gu Kim, Yong Man Ro:
ICADx: interpretable computer aided diagnosis of breast masses. 1057522 - Sarah S. Aboutalib, Aly A. Mohamed, Margarita L. Zuley, Wendie A. Berg, Yahong Luo, Shandong Wu:
Do pre-trained deep learning models improve computer-aided classification of digital mammograms? 1057523 - Shuang Liu, Emily B. Sonnenblick, Lea Azour, David F. Yankelevitz, Claudia I. Henschke, Anthony P. Reeves:
Fully automated gynecomastia quantification from low-dose chest CT. 1057524 - Jun Zhang, Elizabeth Hope Cain, Ashirbani Saha, Zhe Zhu, Maciej A. Mazurowski:
Breast mass detection in mammography and tomosynthesis via fully convolutional network-based heatmap regression. 1057525
Poster Session: Abdominal and Gastrointestinal
- Xiaoqi Liu, Chengliang Wang, Jianying Bai, Guobin Liao:
Detecting PHG frames in wireless capsule endoscopy video by integrating rough global dominate-color with fine local texture feature. 1057526 - Ahmed S. Maklad, Mikio Matsuhiro, Hidenobu Suzuki, Yoshiki Kawata, Noboru Niki, Mitsuo Shimada, Gen Iinuma:
Automatic blood vessel based- liver segmentation using the portal phase abdominal CT. 1057527 - Abhishek Midya, Jayasree Chakraborty, Linda M. Pak, Jian Zheng, William R. Jarnagin, Richard K. G. Do, Amber L. Simpson:
Deep convolutional neural network for the classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. 1057528 - Kenny H. Cha, Lubomir M. Hadjiiski, Heang-Ping Chan, Elaine M. Caoili, Richard H. Cohan, Alon Z. Weizer, Marshall N. Gordon, Ravi K. Samala:
Computer-aided detection of bladder wall thickening in CT urography (CTU). 1057529 - Marc Jason Pomeroy, Hongbing Lu, Perry J. Pickhardt, Zhengrong Liang:
Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps. 105752A - Dhanuj Gandikota, Lubomir M. Hadjiiski, Kenny H. Cha, Heang-Ping Chan, Elaine M. Caoili, Richard H. Cohan, Alon Z. Weizer, Ajjai Alva, Chintana Paramagul, Jun Wei, Chuan Zhou:
Bladder cancer staging in CT urography: effect of stage labels on statistical modeling of a decision support system. 105752B - Xiangrong Zhou, Kazuma Yamada, Takuya Kojima, Ryosuke Takayama, Song Wang, Xinxin Zhou, Takeshi Hara, Hiroshi Fujita:
Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images. 105752C - Chuang Wang, Jayaram K. Udupa, Yubing Tong, Jerry Chen, Sriram Venigalla, Dewey Odhner, Thomas J. Guzzo, John Christodouleas, Drew A. Torigian:
Urinary bladder cancer T-staging from T2-weighted MR images using an optimal biomarker approach. 105752D
Poster Session: Brain and Head
- Noriyuki Takahashi, Toshibumi Kinoshita, Tomomi Ohmura, Eri Matsuyama, Hideto Toyoshima:
Automated volumetry of temporal horn of lateral ventricle for detection of Alzheimer's disease in CT scan. 105752E - Fiona Lippert, Bastian Cheng, Amir Golsari, Florian Weiler, Johannes Gregori, Götz Thomalla, Jan Klein:
Exploring DeepMedic for the purpose of segmenting white matter hyperintensity lesions. 105752F - Panagiotis Korfiatis, Timothy L. Kline, Bradley J. Erickson:
Evaluation of a deep learning architecture for MR imaging prediction of ATRX in glioma patients. 105752G - Akitoshi Katsumata, Tatsumasa Fukui, Shinji Shimoda, Kaoru Kobayashi, Tatsuro Hayashi:
Measurement of hard tissue density based on image density of intraoral radiograph. 105752H - Samuel Remedios, Dzung L. Pham, John A. Butman, Snehashis Roy:
Classifying magnetic resonance image modalities with convolutional neural networks. 105752I
Poster Session: Breast
- Alejandro Rodríguez-Ruiz, Jonas Teuwen, Kaman Chung, Nico Karssemeijer, Margarita Chevalier, Albert Gubern-Mérida, Ioannis Sechopoulos:
Pectoral muscle segmentation in breast tomosynthesis with deep learning. 105752J - Gopichandh Danala, Faranak Aghaei, Morteza Heidari, Teresa Wu, Bhavika Patel, Bin Zheng:
Computer-aided classification of breast masses using contrast-enhanced digital mammograms. 105752K - Abolfazl Zargari Khuzani, Gopichandh Danala, Morteza Heidari, Yue Du, Najmeh Mashhadi, Yuchen Qiu, Bin Zheng:
Applying a new unequally weighted feature fusion method to improve CAD performance of classifying breast lesions. 105752L - Natasha Antropova, Benjamin Q. Huynh, Maryellen L. Giger:
Recurrent neural networks for breast lesion classification based on DCE-MRIs. 105752M - Rinku Rabidas, Abhishek Midya, Jayasree Chakraborty, Anup K. Sadhu, Wasim Arif:
Multi-resolution analysis using integrated microscopic configuration with local patterns for benign-malignant mass classification. 105752N - Faranak Aghaei, Gopichandh Danala, Yunzhi Wang, Ali Zarafshani, Wei Qian, Hong Liu, Bin Zheng:
Association between mammogram density and background parenchymal enhancement of breast MRI. 105752O - Helder Cesar Rodigues de Oliveira, Arianna Mencattini, Paola Casti, Eugenio Martinelli, Corrado Di Natale, Juliana H. Catani, Nestor de Barros, Carlos F. E. Melo, Adilson Gonzaga, Marcelo Andrade da Costa Vieira:
Reduction of false-positives in a CAD scheme for automated detection of architectural distortion in digital mammography. 105752P - Guanxiong Cai, Yanhui Guo, Yaqin Zhang, Genggeng Qin, Yuanpin Zhou, Yao Lu:
A fully automatic microcalcification detection approach based on deep convolution neural network. 105752Q - Bibo Shi, Rui Hou, Maciej A. Mazurowski, Lars J. Grimm, Yinhao Ren, Jeffrey R. Marks, Lorraine M. King, Carlo C. Maley, Eun-Sil Shelley Hwang, Joseph Y. Lo:
Learning better deep features for the prediction of occult invasive disease in ductal carcinoma in situ through transfer learning. 105752R - Nariman Jahani, Eric A. Cohen, Meng-Kang Hsieh, Susan P. Weinstein, Lauren Pantalone, Christos Davatzikos, Despina Kontos:
Deformable image registration as a tool to improve survival prediction after neoadjuvant chemotherapy for breast cancer: results from the ACRIN 6657/I-SPY-1 trial. 105752S - Jimmy Wu, Diondra Peck, Scott Hsieh, Vandana Dialani, Constance D. Lehman, Bolei Zhou, Vasilis Syrgkanis, Lester W. Mackey, Genevieve Patterson:
Expert identification of visual primitives used by CNNs during mammogram classification. 105752T - Chisako Muramatsu, Shunichi Higuchi, Takako Morita, Mikinao Oiwa, Hiroshi Fujita:
Similarity estimation for reference image retrieval in mammograms using convolutional neural network. 105752U - Jun Zhang, Sujata V. Ghate, Lars J. Grimm, Ashirbani Saha, Elizabeth Hope Cain, Zhe Zhu, Maciej A. Mazurowski:
Convolutional encoder-decoder for breast mass segmentation in digital breast tomosynthesis. 105752V - Zhe Zhu, Michael R. Harowicz, Jun Zhang, Ashirbani Saha, Lars J. Grimm, Eun-Sil Shelley Hwang, Maciej A. Mazurowski:
Deep learning-based features of breast MRI for prediction of occult invasive disease following a diagnosis of ductal carcinoma in situ: preliminary data. 105752W - Zhe Zhu, Ehab Albadawy, Ashirbani Saha, Jun Zhang, Michael R. Harowicz, Maciej A. Mazurowski:
Breast cancer molecular subtype classification using deep features: preliminary results. 105752X
Poster Session: Cardiac
- Chaitanya Kolluru, David Prabhu, Yazan Gharaibeh, Hao Wu, David L. Wilson:
Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees. 105752Y - Fatemeh Zabihollahy, James A. White, Eranga Ukwatta:
Myocardial scar segmentation from magnetic resonance images using convolutional neural network. 105752Z - James D. Dormer, Martin T. Halicek, Ling Ma, Carolyn M. Reilly, Eduard Schreibmann, Baowei Fei:
Convolutional neural networks for the detection of diseased hearts using CT images and left atrium patches. 1057530
Poster Session: Eye
- Anastasia Levenkova, Arcot Sowmya, Michael Kalloniatis, Angelica Ly, Arthur Ho:
Lesion detection in ultra-wide field retinal images for diabetic retinopathy diagnosis. 1057531
Poster Session: Lung
- Shan Huang, Xiabi Liu, Guanghui Han, Xinming Zhao, Yanfeng Zhao, Chunwu Zhou:
3D GGO candidate extraction in lung CT images using multilevel thresholding on supervoxels. 1057533 - Shingo Mabu, Shoji Kido, Noriaki Hashimoto, Yasushi Hirano, Takashi Kuremoto:
Opacity annotation of diffuse lung diseases using deep convolutional neural network with multi-channel information. 1057534 - Abhishek Kumar, Sunita Agarwala, Ashis Kumar Dhara, Debashis Nandi, Sudipta Mukhopadhyay, Mandeep Garg, Niranjan Khandelwal, Naveen Kalra:
Localization of lung fields in HRCT images using a deep convolution neural network. 1057535 - Noriaki Hashimoto, Kenji Suzuki, Junchi Liu, Yasushi Hirano, Heber MacMahon, Shoji Kido:
Deep neural network convolution (NNC) for three-class classification of diffuse lung disease opacities in high-resolution CT (HRCT): Consolidation, ground-glass opacity (GGO), and normal opacity. 1057536 - Yiyuan Zhao, Liang Zhao, Zhennan Yan, Matthias Wolf, Yiqiang Zhan:
A deep-learning based automatic pulmonary nodule detection system. 1057537 - Jake N. Sauter, Victoria M. LaBarre, Jacob D. Furst, Daniela Stan Raicu:
An evaluation of consensus techniques for diagnostic interpretation. 1057538 - Natalia M. Jenuwine, Sunny N. Mahesh, Jacob D. Furst, Daniela Stan Raicu:
Lung nodule detection from CT scans using 3D convolutional neural networks without candidate selection. 1057539 - Yashin Dicente Cid, Oula Puonti, Alexandra Platon, Koen Van Leemput, Henning Müller, Pierre-Alexandre Poletti:
An automatically generated texture-based atlas of the lungs. 105753A - Jiamin Liu, Karthik Chellamuthu, Le Lu, Mohammadhadi Bagheri, Ronald M. Summers:
A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans. 105753B
Poster Session: Musculoskeletal and Skin
- Rupal Khilari, Juris Puchin, Kazunori Okada:
Automated quasi-3D spine curvature quantification and classification. 105753C - Daisuke Tsuji, Mikio Matsuhiro, Hidenobu Suzuki, Yoshiki Kawata, Noboru Niki, Yasutaka Nakano, Masafumi Harada, Masahiko Kusumoto, Takaaki Tsuchida, Kenji Eguchi, Masahiro Kaneko:
Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images. 105753D - Roseline Olory Agomma, Carlos Vázquez, Thierry Cresson, Jacques A. de Guise:
Automatic detection of anatomical regions in frontal x-ray images: comparing convolutional neural networks to random forest. 105753E
Poster Session: Quantitative
- Seyedehnafiseh Mirniaharikandehei, Ali Zarafshani, Morteza Heidari, Yunzhi Wang, Faranak Aghaei, Bin Zheng:
Applying a CAD-generated imaging marker to assess short-term breast cancer risk. 105753F - Marc-Antoine Boucher, Nicolas Watts, Frederic Gremillet, Philippe Legare, Samuel Kadoury:
Asymmetry quantification from reflectance images of orthotic patients using structural similarity metrics. 105753G - Benjamin Paul Berman, Qin Li, Sarah McKenney, Stanley Thomas Fricke, Yuan Fang, Marios A. Gavrielides, Nicholas Petrick:
Quantitative characterization of liver tumor radiodensity in CT images: a phantom study between two scanners. 105753H - Jun Wei, Songfeng Li, Heang-Ping Chan, Mark A. Helvie, Marilyn A. Roubidoux, Yao Lu, Chuan Zhou, Lubomir M. Hadjiiski, Ravi K. Samala:
Deep convolutional neural network for mammographic density segmentation. 105753I - Koki Hino, Mikio Matsuhiro, Hidenobu Suzuki, Yoshiki Kawata, Noboru Niki, Katsuya Kato, Takumi Kishimoto, Kazuto Ashizawa:
Quantitative assessment for pneumoconiosis severity diagnosis using 3D CT images. 105753J - Yubing Tong, Jayaram K. Udupa, Chuang Wang, Caiyun Wu, Gargi Pednekar, Michaela D. Restivo, David J. Lederer, Jason D. Christie, Drew A. Torigian:
Quantitative analysis of adipose tissue on chest CT to predict primary graft dysfunction in lung transplant recipients: a novel optimal biomarker approach. 105753K - Hyeong-min Jin, Changyong Heo, Jong Hyo Kim:
Impact of deep learning on the normalization of reconstruction kernel effects in imaging biomarker quantification: a pilot study in CT emphysema. 105753L - Basavaraj N. Jagadale, Jayaram K. Udupa, Yubing Tong, Caiyun Wu, Joseph M. McDonough, Drew A. Torigian, Robert M. Campbell Jr.:
Lung parenchymal analysis on dynamic MRI in thoracic insufficiency syndrome to assess changes following surgical intervention. 105753M - Faranak Aghaei, Gopichandh Danala, Alan B. Hollingsworth, Rebecca G. Stough, Melanie Pearce, Hong Liu, Bin Zheng:
Applying a new mammographic imaging marker to predict breast cancer risk. 105753N
Poster Session: Radiomics
- Joost van der Putten, Svitlana Zinger, Fons van der Sommen, Peter H. N. de With, Mathias Prokop, John Hermans:
Quantitative CT based radiomics as predictor of resectability of pancreatic adenocarcinoma. 105753O - Rahul Paul, Muhammad Shafiq-ul-Hassan, Eduardo G. Moros, Robert J. Gillies, Lawrence O. Hall, Dmitry B. Goldgof:
Stability of deep features across CT scanners and field of view using a physical phantom. 105753P - Kayla R. Mendel, Hui Li, Li Lan, Chun-Wai Chan, Lauren M. King, Nabihah Tayob, Gary Whitman, Randa El-Zein, Isabelle Bedrosian, Maryellen L. Giger:
Temporal assessment of radiomic features on clinical mammography in a high-risk population. 105753Q - Radin A. Nasirudin, Janne J. Näppi, Chinatsu Watari, Mikio Matsuhiro, Toru Hironaka, Shoji Kido, Hiroyuki Yoshida:
Deep radiomic prediction with clinical predictors of the survival in patients with rheumatoid arthritis-associated interstitial lung diseases. 105753R - Wei Mu, Jin Qi, Hong Lu, Matthew B. Schabath, Yoganand Balagurunathan, Ilke Tunali, Robert James Gillies:
Radiomic biomarkers from PET/CT multi-modality fusion images for the prediction of immunotherapy response in advanced non-small cell lung cancer patients. 105753S - Tien T. Tang, Janice A. Zawaski, Kathleen N. Francis, Amina A. Qutub, M. Waleed Gaber:
Classification of brain tumors using texture based analysis of T1-post contrast MR scans in a preclinical model. 105753T - Karen Drukker, Rachel Anderson, Alexandra Edwards, John Papaioannou, Fred Pineda, Hiroyuki Abe, Gregory Karzcmar, Maryellen L. Giger:
Radiomics for ultrafast dynamic contrast-enhanced breast MRI in the diagnosis of breast cancer: a pilot study. 105753U - Nazanin Makkinejad, Nima Tajbakhsh, Amin Zarshenas, Ashfaq Khokhar, Kenji Suzuki:
Reduction in training time of a deep learning model in detection of lesions in CT. 105753V
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.