Uncategorized – Artemis

NASA’s Mobile Launcher Back at Vehicle Assembly Building

NASA’s mobile launcher 1 atop the spaceport’s crawler is transported inside the agency’s Vehicle Assembly Building at Kennedy Space Center in Florida ahead of integration of the Artemis II Moon rocket on Friday, Oct. 4, 2024. The mobile launcher will be used to assemble, process, and launch NASA’s SLS (Space Launch Systems) and Orion spacecraft to the Moon and beyond. Photo credit: NASA/Ben Smegelsky

After spending several months undergoing integrated testing and upgrades at Launch Complex 39B at NASA’s Kennedy Space Center, the agency’s mobile launcher 1 is transported inside the Vehicle Assembly Building in preparation for integration of the Artemis II Moon rocket.

The 4.2-mile trek from Launch Pad 39B to the Vehicle Assembly Building along the crawlerway normally takes eight to 12 hours atop NASA’s crawler-transporter 2, though teams paused the roll operations several times as planned to ensure the operation teams had scheduled breaks and rest. The operation resumed at 1:41 a.m. EDT, Friday, Oct. 4.

Standing 380 feet tall, the mobile launcher – which will be used to assemble, process, and launch the SLS (Space Launch System) rocket and Orion spacecraft – contains all the connection lines – known as umbilicals – and ground support equipment that will provide the rocket and spacecraft with the power, communications, fuel, and coolant necessary for launch. This will be the mobile launcher’s last solo trek out to the launch pad ahead of integration of the Artemis Moon rocket, and it will remain inside the Vehicle Assembly Building until it is ready to return to the pad with the rocket for a tanking test.

The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.

Intuitive Machines Updates IM-1 Landing Time, Carrying NASA Science

Carrying NASA science instruments to the Moon, Intuitive Machines’ flight controllers conducted a lunar correction maneuver to raise the orbit for Odysseus overnight. As a result, the anticipated landing time is now 4:24 p.m. EST on Thursday, Feb. 22.

NASA coverage of the mission will begin at 3 p.m. on NASA+, NASA TV, and the agency’s website.

Intuitive Machines, NASA Science Progress Toward Moon Landing

Odysseus passes over the near side of the Moon after entering lunar orbit insertion on February 21. Credit: Intuitive Machines
Odysseus passes over the near side of the Moon after entering lunar orbit insertion on February 21. Credit: Intuitive Machines

Intuitive Machines’ Odysseus lander has completed lunar orbit insertion successfully and is currently orbiting the Moon. Odysseus continues to be in excellent health and is approximately 60 miles (92km) from the Moon. 

The spacecraft will orbit the Moon for approximately one day before beginning its descent toward the lunar surface. The landing opportunity is targeted for Thursday, Feb. 22, at 5:30 p.m. EST.  

All powered NASA science instruments on board have completed their transit checkouts, received data, and are operating as expected, including: LN-1 (Lunar Node 1 Navigation Demonstrator), NDL (Navigation Doppler Lidar for Precise Velocity and Range Sensing), RFMG (Radio Frequency Mass Gauge), ROLSES (Radio-wave Observations at the Lunar Surface of the Photoelectron Sheath), SCALPSS (Stereo Cameras for Lunar Plume-Surface Studies). Since the LRA (Laser Retroreflector Array) instrument is a passive experiment designed for the lunar surface, it cannot conduct any operations in transit. 

LN-1 has made three successful passes with NASA’s Deep Space Network, establishing real-time communications with ground stations on Earth. Upon lunar touchdown, the LN-1 team will conduct a full systems checkout and begin continuous operations within 24 hours of landing. NASA’s Deep Space Network will receive its transmissions, capturing telemetry, Doppler tracking, and other data and relaying it back to Earth. 

A SCALPSS checkout was completed during transit, confirming the cameras are operating as expected and the instrument is in good health. Using four tiny cameras, SCALPSS will collect imagery of how the surface changes from interactions with the spacecraft’s engine plume as the lander descends toward the Moon. 

RFMG continues to gauge the cryogenic propellants on Odysseus throughout the mission, including propellant loading, transit, lunar orbit insertion burn, and low lunar orbit.  Data collection and analysis will continue through landing on the Moon and could provide insights on how to measure fuel in microgravity.  

NDL and ROLSES have been operated, and flight controllers will continue to monitor the instruments and collect data to inform preparations for landing. 

Odysseus’ Terrain Relative Navigation camera captures the Bel’kovich K crater on the Moon’s northern equatorial highlands. The crater has an approximate 50 km diameter with mountains in the center, made when the crater was formed. Credit: Intuitive Machines
Odysseus’ Terrain Relative Navigation camera captures the Bel’kovich K crater on the Moon’s northern equatorial highlands. The crater has an approximate 50 km diameter with mountains in the center, made when the crater was formed. Credit: Intuitive Machines

 

Intuitive Machines’ IM-1 mission is the company’s first mission through the agency’s Commercial Lunar Payload Services initiative, which aims to gain new insights into the lunar environment and expand the lunar economy to support future crewed missions under NASA’s Artemis campaign. 

Follow along with Intuitive Machines for the latest operational updates on their mission.   

With NASA Science Aboard, Astrobotic’s Mission Continues to Evolve

The following NASA statement is attributed to Dr. Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington:

As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, Astrobotic’s Peregrine became the first American commercial lunar lander to launch on a mission to the Moon. Under the Artemis campaign, NASA is supporting exploration through the development of a lunar economy fostering a new commercial robotic delivery service carrying NASA science and technology instruments to the Moon in advance of future missions with crew. The privately designed and developed Peregrine robotic spacecraft uses novel, industry-developed technology, some of which has never flown in space. Shortly after a successful launch and separation from the rocket on Jan. 8, the spacecraft experienced a propulsion issue that would ultimately prevent it from softly landing on the Moon.

Astrobotic said on its current trajectory, Peregrine will re-enter the Earth’s atmosphere on Thursday, Jan. 18, and is likely to burn up. Astrobotic worked with NASA’s assistance to assess the most appropriate action, and this is the best approach to safely and responsibly conclude Peregrine Mission One.

While it’s too soon to understand the root cause of the propulsion incident, NASA continues to support Astrobotic, and will assist in reviewing flight data, identifying the cause, and developing a plan forward for the company’s future CLPS and commercial flights.

Spaceflight is an unforgiving environment, and we commend Astrobotic for its perseverance and making every viable effort to collect data and show its capabilities of Peregrine while in flight. Together, we will use the lessons learned to advance CLPS.

Additional updates can be found on Astrobotic’s platforms.

Tune in to Hear NASA Discuss Artemis Moon Mission Plans

NASA will hold a media teleconference today at 1:30 p.m. EST to provide an update on the agency’s lunar exploration plans for the benefit of all under Artemis.

Audio of the briefing will stream live on NASA’s website.

In addition to NASA Administrator Bill Nelson, agency participants will include:

    • NASA Associate Administrator Jim Free
    • Catherine Koerner, associate administrator, Exploration Systems Development Mission Directorate
    • Amit Kshatriya, deputy associate administrator, Moon to Mars Program, Exploration Systems Development Mission Directorate

The following partner representatives also will be available to answer questions during the call:

    • Mike Lauer, RS-25 Program director, Aerojet Rocketdyne
    • Russell Ralston, vice president and Extravehicular Activity Program manager, Axiom Space
    • Dave Leeth, mobile launcher 2 deputy project manager and principal vice president, Bechtel
    • John Couluris, senior vice president of lunar permanence and Human Landing System Program manager, Blue Origin
    • Dave Dutcher, vice president and Space Launch System Program manager, Boeing
    • Peggy Guirgis, general manager, Space Systems, Collins Aerospace
    • Lorna Kenna, vice president and Consolidated Operations, Management, Engineering and Test Program manager, Jacobs
    • Tonya Ladwig, vice president human space exploration and Orion Program manager, Lockheed Martin
    • Chris Coker, vice president for civil programs, Maxar
    • Mark Pond, senior director of NASA programs, Northrop Grumman
    • Jessica Jensen, vice president of customer operations and integration, SpaceX
    • Daniel Neuenschwander, director of human and robotic exploration, ESA (European Space Agency)

Through Artemis, the agency will establish a long-term presence at the Moon for scientific exploration with our commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. The SLS (Space Launch System), exploration ground systems, and NASA’s Orion spacecraft, along with the human landing system, next-generation spacesuits, the lunar space station, Gateway, and future rovers are NASA’s foundation for deep space exploration.

Astrobotic Experiences Issue Aboard First NASA CLPS Robotic Flight to the Moon

Carrying NASA science planned for the Moon, United Launch Alliance successfully launched its Vulcan rocket and Astrobotic’s lunar lander early this morning. Astrobotic’s Peregrine lander experienced a propulsion issue after the spacecraft entered its operational state. This prevented Astrobotic from achieving sun-pointing orientation. The company is assessing and will provide more information as soon as it is available.

“Each success and setback are opportunities to learn and grow,” said Joel Kearns, deputy associate administrator for exploration at NASA’s Science Mission Directorate in Washington.  “We will use this lesson to propel our efforts to advance science, exploration, and commercial development of the Moon.”

Below are updates from Astrobotic so far:

 https://x.com/astrobotic/status/1744367789953933641?s=20

https://x.com/astrobotic/status/1744389634568724791?s=46&t=bbgk_BORuaKEyjSlQeAXng

https://twitter.com/astrobotic/status/1744412283743199585

https://twitter.com/astrobotic/status/1744419692813443333

https://twitter.com/astrobotic/status/1744469638640005538

https://twitter.com/astrobotic/status/1744543629392134194

https://twitter.com/astrobotic/status/1744770456626893215

https://x.com/astrobotic/status/1744835489838854215?s=20 

Moon Bound! NASA Science Heads to Moon on Astrobotic Robotic Lander  

Astrobotic’s Peregrine lander successfully powered on and is now on its way to the Moon, carrying NASA science as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis program.   

Peregrine is expected to land on the lunar surface on Feb. 23 and, throughout the approximate 10-day mission, the agency’s scientific instruments will study the lunar exosphere, thermal properties of the lunar regolith, hydrogen abundances in the soil at the landing site, magnetic fields, and conduct radiation environment monitoring.   

This concludes our live launch coverage. Continue to follow along for more CLPS updates: nasa.gov/clps.   

Astrobotic Lander Carrying NASA Instruments Separates from ULA Vulcan Rocket 

At approximately 3:09 a.m. EST, Astrobotic’s Peregrine lander separated from United Launch Alliance’s Vulcan rocket. Onboard Peregrine are NASA scientific instruments and other commercial payloads to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis program. Coming up, Peregrine will power up and begin its journey to the Moon. 

Liftoff of ULA Vulcan Rocket! NASA Science Begins Journey to Moon on Astrobotic Robotic Lander  

At 2:18 a.m. EST, United Launch Alliance launched its Vulcan rocket and Astrobotic’s Peregrine lander from Launch Complex 41 at Cape Canaveral Space Force Station in Florida.  

Onboard Peregrine are a suite of NASA scientific instruments and commercial payloads to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis program. The payloads onboard the lander aim to help the agency develop capabilities needed to explore the Moon under Artemis and in advance of human missions on the lunar surface.   

The next major milestone for Peregrine will be separation from Vulcan, which is expected to occur in approximately 50 minutes or around 3:09 a.m. EST. Following this, Peregrine will power on, commencing its journey to the lunar surface.  

 

NASA’s Artemis II European Service Module is Making FAST Moves

Technicians at NASA’s Kennedy Space Center in Florida operate a 30-ton crane to lift and transfer the Orion spacecraft’s service module into the FAST (final assembly and system testing) cell on May 22, 2023, inside the spaceport’s Neil A. Armstrong Operations and Checkout Building.

Teams are performing final checkouts of the Orion spacecraft’s service module before integrating the crew and service modules for Artemis II, the first Artemis mission with crew. In parallel, technicians from Airbus will conduct inspections of the solar array wings following the successful completion of service module acoustic testing in May, which ensured the service module can withstand the speed and vibration it will experience during launch and throughout the mission. During the inspections, each of the four panels will be fully redeployed and reexamined. The crew module also will undergo acoustic testing ahead of joining with the service module.

Provided by ESA (European Space Agency), the service module is the powerhouse that will fuel, propel, and provide in-space maneuvering capability, and is responsible for life support commodities such as water and breathable air for astronauts onboard Orion in support of future Artemis missions.

View additional imagery of the service module’s move to the final assembly and system testing cell.