ガス吸収を実現しようとしたら、塔・タワーが一般的ですが、局所的にはエゼクターも活躍します。反応器や真空ポンプを代用するのは、緊急的用途や一時的なものにしたいです。完全に使えないわけではないので、いざ使わざるを得ない状況になれば、しっかり評価しましょう。そんなことにならないのが理想的ですが。
化学プラントの設備・運転を分かりやすく解説。国立の機電系大学院卒業→化学会社のプラントエンジニア15年以上。機械設計中心、海外勤務、製造管理経験あり。
|
https://twitter.com/neoneeet |
---|
化学プラントでタバコを吸ってはいけないシンプルな理由【大阪万博トイレ建設現場の問題】
化学プラントではタバコを吸うことを特定エリア全面で禁止したりします。危険物がどこに溜まっているか分からず、ちょっとした着火源でも危険になるからです。着火源を遮断することが最も確実だから、タバコの火を消しているかどうかは関係なく、とにかく持ち込まないと分かりやすくすることが大切です。
フレキシブルチューブの継手はフランジ・ワンタッチ・ねじ込みの3つが基本です。危険物など漏れを最小化したいときはフランジ、危険物でなく取り外し頻度が高い場合はワンタッチ、振動など折れが気になるときはねじ込みと使い分けています。漏れや作業性に対するリスクをどうとるかで、どの継手を選ぶか変わります。会社や工場によって結構変わると思います。
LOTO管理をプラント内の入槽作業で行うときの注意点をまとめました。電力遮断は基本ですが、鍵の管理をどうするかで各社対応が変わってきます。配管は遮断板で防ぎましょう。窒素は切り離す方が確実です。換気ラインは遮断板で防ぐと駄目です。
化学プラントの機電系エンジニアのキャリアは、工場の生産技術が多いですが、生産企画や製造現場の道もあります。本社の生産技術やエンジニアリング専門の職場に行くこともゼロではありません。研究は新入社員の時限定と思った方が良いでしょう。運に左右されますが、道は一つではありません。その職場で頑張っていると別の道が見えてくるでしょう。
化学プラントの機械系エンジニアとして知っておきたい知識レベルをまとめました。扱う項目はたいてい膨大な種類があります。専門家ではないので、その種類を全部理解する必要はなく、数個など数えられる範囲。その理解をした後に、専門家と議論し、素人に説明していくことで、知識の確立やステップアップができるでしょう。
化学プラントで合理化をゼロベースで考えるコツをまとめました。すでに決まっていると思われるプロセスでも、安い原料・モル比や温度圧力などのプロセス条件・廃棄物のリサイクル・ユーティリティの削減など、着目できる部分は多いです。これらを実験や現場での試製造をしながら、最適解を見つけていきましょう。
大型設備の台数制御化の検討で大事なことをまとめました。能力検証・メンテナンス体制・費用・設置場所の考えが大事です。リスクが下がる方向なので台数制御化はおススメですが、コストがアップするなど意外な可能性があります。検討する要素が多くチャレンジする価値は大いにあるでしょう。
多品種少量生産のバッチ系化学プラントの生産調整は大変です。販売量の予測がしにくく、在庫調整が大変です。生産調整をしようとしたらオペレータや関連工場の影響も考えないといけません。運転トラブルや試製造による余裕を見ておかないといけません。SDMも変動リスクとしてあり得ます。
粉体製品で異物混入が起きるとかなり大変です。ロットの特定をして、場合によっては出荷先まで出向きます。粉体製品を開封して異物を調べ上げ、原因調査をします。設備由来の場合は、組み上げて完全回収を目指します。再発防止対策を取って、ようやく生産再開ですね。
化学プラントで異物混入を防ぐために徹底するべきことを解説しました。原料や設備など目視確認が大前提。持ち込み物の員数管理をして、できれば壁で囲いましょう。フィルターに異物除去・設備内部の脱落防止を行い、最終的に検査器具を通すようにしましょう。
ゴムホースとフレキシブルチューブは似たような用途に使えますが、使い分けはできます。ゴムホースは耐圧性に不安があるので、水系で開放状態で使いましょう。フレキシブルチューブは金属被覆を表呪としつつ、付け間違えが起きないように、口径や材質を選びましょう。どちらも定期交換が必要です。
化学プラントのガスラインの材質選定は、間違えると大きな問題になります。静電気着火のリスクが高いので樹脂配管は止めた方が良いでしょう。ついつい空気としてライン設計してしまいがちです。金属配管でメンテナンスを重視するか、高価なライニング配管にするか。運転や保全の思想と関わってきます。
バッチ系化学プラントの建設設計だけを考えていると後々困ること
バッチ系化学プラントの建設設計だけを考えると、設備の標準化ができなかったり、1プラントの将来性だけを考えたり、設備の交換ルートを考えなかったり、他プラントのトラブルが反映されなかったりします。情報の蓄積とアピールが大事ですね。
最適保温厚みの計算を現場に応用するために、保温単価と熱量単価のパラメータを少し変えてみました。保温単価<熱量単価であると最適保温厚みが算出されます。逆だと保温厚みが小さいほど有利という結果になります。最適計算に縛られずに、運転条件の振れを考慮して、余裕を持った設計をしたいですね。
化学プラントでヘルメットを付ける理由は、歩いている時に配管に頭をぶつける可能性があることが最も大きな理由です。見学で何気なく立ち入るだけでも危険です。周りをよく見て歩けないとぶつかります。上から物体や液体が落ちてきたり、工事の足場にぶつけたり、転落転倒する可能性もあり。
若手社員の昇進を左右する要素は、JTCの場合は多くはありません。失敗しなければそれだけでプラス評価。現場に好かれたり、多くの部署と関わる仕事をすればさらにプラス評価です。逆に評判が悪かったり、人事に目を付けられるとマイナス評価です。この評価が積み重なると、1年程度の差が付いてくるでしょう。
化学プラントの工事で起こりやすい品質トラブルをまとめました。配管のトラブルが多く、ボルトナットが混入したりガスケットが間違っている問題が多いです。逆勾配や中心がズレている配管は、チェックが難しいです。錆の混入や部品の入れ忘れは頻度が少ないが大きな問題になりやすいです。
タンク底の分液配管の弁と計器の組み合わせ例を解説しました。覗き窓を通して液を送るだけではなくて、導電率計・密度計や流量計を付けたりします。交換のためにバルブを付けると安心感が上がります。洗浄は覗き窓を中心に上側と下側の2パターンがありますので、分けて考えましょう。
バイパスラインの基本と、バッチ系化学プラントでの使い方を紹介しました。ストレーナ・ポンプ・流量計などは使い方が結構難しいです。逆止弁やスチームトラップは、運転上・保全上必要となります。標準的にとりあえず付けていても良さそうですが、実際に使うかどうかは別問題ですね。
「ブログリーダー」を活用して、ねおにーーとさんをフォローしませんか?
ガス吸収を実現しようとしたら、塔・タワーが一般的ですが、局所的にはエゼクターも活躍します。反応器や真空ポンプを代用するのは、緊急的用途や一時的なものにしたいです。完全に使えないわけではないので、いざ使わざるを得ない状況になれば、しっかり評価しましょう。そんなことにならないのが理想的ですが。
製造課を外から見ていると、課長の差というのは結構見えてきます。プラントエンジニアとしてではなく、生産技術や企画の方が見えやすいでしょう。課長がプレイヤーとして仕事をせざるを得ないというのは、本来は注意信号です。長期化すると、課全体が弱くなっていきます。負の連鎖が蓄積しないようにするには、課としての取り組みと、その実態を知って外部からフォローする取り組みの両面が欠かせないでしょう。
プラントオペレータは今後少なくなっていくでしょう。その中でオペレータが足りないという可能性は少ないと思いがちですが、小さな単位では起こりえます。生産数量・投資・異動などの形として見えてきます。オペレータとしては、この情報や周囲の稼働状況は敏感になっていた方が良いでしょう。その中で、どう振舞うかを考えることができますね。
プラント設計では配管設計はとても大事です。良否は装置サイズや動線に影響を与えたり、液ガスが流れなくなったりします。配管の数が多いので考えることは多く、建設コストやメンテナンスコストにも実は影響を与えます。ただし、それらの問題が表面化することは少なく、運用でカバーされがちです。配管設計者の質が今後も大事になることは確かですね。
金属系のポンプの材質を指定するとき、ケーシングとインペラに対して、鉄とステンレスのどちらを選ぶかという問題があります。どちらも鉄というのは、プラント内部では避けた方が良いでしょう。逆にどちらもステンレスとするのが無難です。ケーシングは鉄でインペラはステンレスというのは何かと中途半端になりがちです。ライニングはもっとトラブルになりやすいです。
タンクのノズル数が少ないために、二重ノズルという案を考えることがあります。流速を合わせるための口径設計が大事ですし、ライニングは失敗しやすいです。サイズが合わずに標準化できなくなると、メンテナンス性も悪くなります。どうしても使用する場合は、数を限定して、メンテナンス周期を定めて、特殊な扱いにしましょう。
ガスラインの設計を例に、反応滴下速度を変えることで口径設計の限界を越えないという例を紹介しました。設備上どうしてもできない範囲なのに、気が付かずに配管サイズだけを当てはめてしまうと、大事故に繋がるかも知れません。設備のことを把握しつつ、運転条件の前提にも目を向けて、コミュニケーションを取りつつ設計をしていきましょう。
熱交換器の設計はすればするほど、何でもいい中で最も良さそうなものを選ぶという発想になってきます。イニシャルコストよりもランニングコストを重視した設計が大事であり、能力設計ではなくプラントの運転思想や稼働条件に関わってくる話です。ユーザーエンジニアはこういう部分に積極的に関わらないと、プラントエンジニアリング会社や機器ベンダーと同じ考え方になってしまうと良くはないでしょう。
粉体ホッパーを使うことは、バッチ運転でも大きなメリットがあります。作業時間を拘束しないし、安全性が高くなる、重量管理ができる無くても何とかなってしまう場合もありますが、安定的な操業をするにはホッパーは強い味方となるでしょう。
最小配管は詰まりやサポートなど配管設計において大事な考え方です。液抜き・サンプリング・滴下などのラインは話題になりやすいです。最小口径以下のラインを使ってはいけないというわけでなく、柔軟な思考が大事です。多くの口径の中から標準的に使う種類を限定することで、例外への処置もしやすくなるでしょう。
配管フランジにカバーを付ける場合というのは、そう多くありません。付けても上手くいかずに、悪化させる場合の方が多いです。デメリットを考えても、付けた方が良いという場合はそう多くはありません。メンテナンスをしっかり考えて、フランジカバーは最低限にした方が良いでしょう。
化学プラントのルールやマナーはいろいろあります。関係者全員に関わるものもありますが、誰にも指摘されないので違反しているというケースは増えています。指摘することが難しくなってきた現在、違反者が問題を起こしてから見直しをするという循環をするしか手が無い気がします。
ポンプの吸込み側にフィルターを設置する場合、キャビテーションや空運転の防止が必要です。そもそもフィルターで捕まえなくても良いように、フィルターよりも手前で異物除去の対策ができないか考えましょう。フィルターを設置する場合でも、洗浄作業性を上げるためにラインの設計は大事なことです。建設時には問題なくても、後々で問題になることもあります。ポンプ周りはスペースを取っておきましょう。
ねじ込み継手は化学プラントでは非常に使いにくいです。あえて使うなら、漏れても良い水や空気、軽量化を狙ったドラム缶周り、折れてしまう可能性がある設備回り、くらいに限定しましょう。漏れのリスクが上がるので、保護具やパトロールなどの別の対策が必要になります。ねじ込み継手を選ぶ場合は、総合的に考えてあえて選ぶという意識を持っておきたいですね。
ボールバルブとグローブバルブのどちらを選ぶのか悩む場面はあります。たいていの場合はボールバルブで上手くいきますが、低温・高温や高圧など条件が厳しい時にはグローブバルブを選ぶ方が上手く行きやすいです。標準化されている場合も多いでしょうが、それぞれのラインでボールとグローブのどちらをなぜ選んでいるかが言語化できれば、その工場でのプラント設計や改造を自由に行えるでしょう。
SUS304ではなくSUS316Lを選ぶというのは、それなりに考え方があります。耐食性が高いがコストも高い。優先度を設定するには、使用環境・頻度・組成の変化・故障時の影響・メンテナンス性などの軸で考えると良いでしょう。全部の考え方を使わずに、数個の軸で整理するだけでも、結構差が出てくることが多いです。
4M変更と化学プラントでの注意点を解説しました。Man・Machine・Method・Materialの4つのMを変更すると、品質に影響を与える可能性が高いです。大なり小なり検討範囲があります。自社での変更は結構シビアに扱い苦労も良く実感しますが、他社の変更については結果だけしか見えないので実感しにくいです。
スチームトラップの組み方は、ディスクやフロートなどの基本的なものでも、いくつかのパターンが考えられます。トラップとバイパスの2つのラインが必要で、バルブで使い分けます。排出先をまとめたり、ブロー先を増やしたり複数の組み方が考えられます。安定的な運転をするには、できるだけシンプルな基本形がおススメです。
流量計と操作弁の間はできるだけ短くしましょう。指示値と投入量の間に差ができて、運転上のトラブルに繋がります。複数に送るなどヘッダー形式にする場合でも、装置手前に操作弁を置くようにしましょう。コストアップになりますが、安定運転の方が大事です。
真空ポンプを停止する場合は、逆流が問題になります。逆止弁で止める、高さを上げる、別のラインから圧力を上げるなどの方法があります。一般例として減圧下で加熱することが考えられるので、冷却をしてから停止をするようにしましょう。
プラントの増改築プロジェクトの設計段階で、オーナーズエンジニアが考えていることをまとめました。 オーナーズエンジニアが何をどう考えているかを知る機会はあまりなく、一方的な情報のやり取りをしていることが多いでしょう。 忙しくて対内・対外のコミ
プラントの増改築プロジェクトの設計段階で、オーナーズエンジニアが考えていることをまとめました。 オーナーズエンジニアが何をどう考えているかを知る機会はあまりなく、一方的な情報のやり取りをしていることが多いでしょう。 忙しくて対内・対外のコミ
バッチプラントのプロセス制御をトレンド(時間推移)の面で考えます。 制御系エンジニア初心者や機械家エンジニア向けです。 特に機械系エンジニアは、設備や配管に係ることはあっても、トレンドを見る機会はほとんどありません。 その割に、トラブル対応
ポンプをタンクや反応槽周りに複数台設置するケースは、化学プラントだと非常に多いです。 特に連続プラントだと、かなり一般的でしょう。 バッチプラントだとあまり一般的ではなく、増改築を繰り返していくうちに気が付いたら並列設定していたという場合が
フランジ用ボルトの簡単な比較をします。 スタッドボルトとマシンボルトの2種類がありますが、その違いを解説します。 どちらを使うべきなのか、どちらでもいいのか、という疑問は初心者のころには出てきます。 ボルトにも色々な種類や仕様があるので一概
ドラム缶やフレキシブルコンテナ(フレコン)に充填をするとき、コンベアとの位置関係は重要な設計要素になります。 しかし、建設設計のうち最後の最後に回されて、どうしようもなくなってしまう場面もあります。 最低限必要な要素をしっかりと見極めると、
フレキシブルコンテナをプラント現場まで運ぶ方法を考えます。 化学プラントでもフレキシブルコンテナは、非常に多く使います。 ペレットや粉体などさまざま。 フレキシブルコンテナは100kgを越える大重量で、人手ではとても運ぶことはできません。
製品とプラントのライフサイクルを考えます。 ライフサイクルは人間の一生を考えるときに出てくる概念です。 これを製造業の製品や設備に対しても当てはめようという考え方があります。 化学プラントの場合は、製品とプラントの2つのライフサイクルを個別
圧力損失の計算では継手の抵抗を考えます。 継手の大小関係がどれくらいであるかを感覚的に知っておこうというのが、本記事の狙いです。 机の上で詳細の計算をしなければ分からない、というのでは現場のエンジニアとしては少し困ります。 現場で起こったこ
制御に関する簡単な話です。 機械エンジニアとして仕事をしていると、プラント運転とか設備の中で起こっていることとか考える機会がかなり少ないです。 機械を購入する時には、設備の知識は絶対に必要ですが、勉強する機会がないというのは困ります。 実際
アンカーボルトについて考えます。 基礎埋め込み型のスタンダードなアンカーボルトは、化学プラントではポンプなどによく使います。 世間的にはケミカルアンカーを使いますが、圧力容器など重要な個所には古典的なアンカーボルトが一番信頼が置けます。 ア
フランジとガスケットの接続寸法を比較します。 化学プラントの機械系エンジニアは、フランジやガスケットと必ず関わります。 ところが、今回の話を意識することはほぼありません。 というのも、規格ですべて決まってしまっているから。 日本で仕事をして
フランジとパイプを寸法の面で、確認します。 フランジの形はいくつもあります。 ハンドブックなどを眺めながら、数値を比較していくと、それぞれの特徴が見えやすくなってくるでしょう。 設計者にとっても今回の内容は、頭の中でいくつかの認識の仕方に違
フランジ接続やねじ込み接続では、接続継手とパイプをつなぎ合わせます。 配管設計の基礎的な部分ですが、これらがちゃんと接続可能であることを、図面や寸法表で確認することが可能です。 詳細の設計をする人でなければなかなか見ない資料ですが、ちゃんと
機械ノズル(管台)と配管を接続する時の基本的な考え方を解説します。 配管設計を優先して行うため、ノズルのことは意外と後回しになります。 結果的に、メーカーなどの他人任せになることも。 ノズルは簡単に決めれるわけでもなく、関連する要素もさまざ
樹脂配管を化学プラントで使う機会は少ないので、設計の際には意外と困ります。 その典型例が面間。 塩化ビニル配管で直面しやすい問題です。 狭い場所を配管を通そうとして設計するものの、既製品の面間に限界があるために、上手くいかないケースがありま
樹脂配管を排水ラインに設置すると、結構な確率で失敗します。 世間一般に使われる樹脂配管ですが、化学プラントで使うとトラブルになりやすいです。 使いどころをしっかり理解していないといけないので、化学プラントでは使わないと言い切るくらいでちょう
送風機・ファン・ブロアーの設計では、単に気体を送るだけの機械と考えてしまいがちです。 ところが、多くのプロセスでは液体分を含んだガスを送ることになり、送風機・ファン・ブロアーでは液体が溜まってしまう問題があります。 最悪閉塞するということも
グラスライニング反応器のオプションに関する話です。 汎用性が求められるグラスライニング反応器は、標準形で統一していく方が好ましいです。 その標準も、時代が変われば変わっていきます。 使う場所によっては、特殊性が必要となることもあるでしょう。
ステンレス反応器について解説します。 グラスライニング設備の代わりとして、ステンレス製設備の需要は、化学プラントでは一定量あります。 数が少なくて目立ちにくい設備ですが、特徴をしっかり理解していないと、概念設計の段階で詰まってしまいます。