
人工智能:一种现代的方法
文章平均质量分 96
人工智能:一种现代的方法
一只大小菜
我是一个AI助手,由OpenAI开发。我是基于大规模语言模型训练而成,具备广泛的知识和语言理解能力。我可以回答各种问题,提供信息和帮助解决问题。
展开
-
人工智能:一种现代的方法 第十四章 概率推理
上一部分我们讲了确定性问题,确定性问题域是在知识表示中,使用精确的形式表达知识,如逻辑规则、数学公式等。在推理过程中,基于逻辑推理或数学推理规则进行推断,例如演绎推理或归纳推理。这种问题域的特点是结果是确定的,不涉及概率或不确定性,因此可以使用形式化的推理方法来解决问题。而对于不确定问题,是没办法的。而本章讲述的就是不确定性问题。原创 2023-11-23 15:51:40 · 736 阅读 · 1 评论 -
人工智能:一种现代的方法 第三章 经典搜索 中
我觉得具体搜索策略的在该书有两点不足,一是伪代码难以理解,二是没有具体例子帮助理解。所以本文用python伪代码代替,以及收集一些例子供大家参考本文讲了具体搜索中无信息算法,并对比了无信息搜索策略性能对比。希望各位能仔细思考之间的关系与差别并深思我收集的例题。下篇文章将介绍有信息搜索算法,以及启发式函数。不要走开,马上回来,各位敬请期待。原创 2023-11-06 16:08:22 · 836 阅读 · 0 评论 -
人工智能: 一种现代方法 第五章 对抗搜索
竞争环境:每个Agent的目标之间是冲突的狭义理解,人工智能中的博弈,通常指在完全可观察的环境中,两个Agent轮流执行确定性动作的零和博弈在博弈搜索中,由于搜索图(树)庞大,A*搜索效率较低。为了提高搜索效率,引入剪枝和启发式评估函数。剪枝允许忽略不影响最终决策的部分,减少搜索空间;启发式评估函数通过估计状态的真实效用值,快速指导搜索方向。综合应用剪枝和启发式评估函数,可以加速博弈搜索,找到较优解决方案二人博弈两名玩家:MAX先手,MIN后手s:状态。原创 2023-11-08 10:30:40 · 460 阅读 · 0 评论 -
人工智能:一种现代的方法 第二章 智能体
利用chatgpt理解人工智能原理,容易理解的例子,和丰富的插图。原创 2023-11-06 10:54:21 · 659 阅读 · 0 评论 -
人工智能 :一种现代的方法 第七章 逻辑智能体
KBA(knowledge based agent)与逻辑模型,有效性,可满足性,蕴含,推理过程如何证明KB蕴含a(模型检验,逻辑等价,推理规则)基于命题逻辑的Agent如何工作的。原创 2023-11-14 20:54:42 · 1490 阅读 · 0 评论 -
人工智能一种现代的方法 第四章 非经典搜索 上(局部搜索)
在第三章中,环境是可观察的、确定的、已知的,问题的解是一个行动序列。本章将讨论放宽约束,本文所讲的部分是局部探索算法,考虑解的状态而不是到达该状态的路径,比如八皇后问题,不关心是怎么到目的状态的,只关心最终布局对不对,许多重要应用都有这样的性质,如作业空间调度,自动程序设计等。同时局部搜索也对最优化问题十分有用。原创 2023-11-07 12:24:02 · 443 阅读 · 0 评论 -
人工智能:一种现代的方法 第三章 经典搜索 下
本部分本书的举例不老套,线索较完整。所以本人便大致依照本书的来讲的,但伪代码还是改为了python代码以便大家理解。本章介绍了在确定性的、 可观察的、静态的和完全可知的环境下,Agent 可以用来选择行动的方法。在这种情况下,Agent可以构造行动序列以达到目标;这个过程称为搜索。在这种环境下,问题由形式化由良定义问题和搜索树抽象为图的问题,再根据问题的规模和要求以及搜索策略的性质选择搜索策略求的解。原创 2023-11-07 12:23:20 · 313 阅读 · 0 评论 -
人工智能:一种现代的方法 第三章 经典搜索 上
本文我们主要讲述了问题求解智能体的工作流程,良定义的问题和解,数据结构搜索树。这方面很重要的良定义的问题和解 和搜索树,现实中很多问题都可以抽象成图的问题,然后进行搜索求解,良定义的问题和解提供一种思路来如何抽象。同时搜索树也发挥出重要作用,将状态转化为节点,边作为动作可选动作,以及搜索策略:选择哪个结点进行扩展。接下来我们将继续讲述具体的搜索策略,敬请期待!!!原创 2023-11-06 13:03:50 · 587 阅读 · 0 评论