时间复杂度中的log(n)底数是多少?_logn-CSDN博客

时间复杂度中的log(n)底数是多少?

问题:

最近有好几学生问我,无论是计算机算法概论、还是数据结构书中,

关于算法的时间复杂度很多都用包含O(logN)这样的描述,但是却没有明确说logN底数究竟是多少。

解答:

算法中log级别的时间复杂度都是由于使用了分治思想,这个底数直接由分治的复杂度决定。
如果采用二分法,那么就会以2为底数,三分法就会以3为底数,其他亦然。
不过无论底数是什么,log级别的渐进意义是一样的。
也就是说该算法的时间复杂度的增长与处理数据多少的增长的关系是一样的。

我们先考虑O(logx(n))和O(logy(n)),x!=y,我们是在考虑n趋于无穷的情况。
求当n趋于无穷大时logx(n)/logy(n)的极限可以发现,极限等于lny/lnx,也就是一个常数,
也就是说,在n趋于无穷大的时候,这两个东西仅差一个常数。
所以从研究算法的角度log的底数不重要。

最后,结合上面,我也说一下关于大O的定义(算法导论28页的定义),
注意把这个定义和高等数学中的极限部分做比较,
显然可以发现,这里的定义正是体现了一个极限的思想,
假设我们将n0取一个非常大的数字,
显然,当n大于n0的时候,我们可以发现任意底数的一个对数函数其实都相差一个常数倍而已。
所以书上说写的O(logn)已经可以表达所有底数的对数了,就像O(n^2)一样。
没有非常严格的证明,不过我觉得这样说比较好理解,如果有兴趣证明,完全可以参照高数上对极限趋于无穷的证明。

其实这里的底数对于研究程序运行效率不重要,写代码时要考虑的是数据规模n对程序运行效率的影响,常数部分则忽略,同样的,如果不同时间复杂度的倍数关系为常数,那也可以近似认为两者为同一量级的时间复杂度。

现在来看看为什么底数具体为多少不重要?

读者只需要掌握(依稀记得)中学数学知识就够了。

假设有底数为2和3的两个对数函数,如上图。当X取N(数据规模)时,求所对应的时间复杂度得比值,即对数函数对应的y值,用来衡量对数底数对时间复杂度的影响。

比值为log2 N / log3 N,运用换底公式后得:(lnN/ln2) / (lnN/ln3) = ln3 / ln2,ln为自然对数,显然这三个常数,与变量N无关。

用文字表述:算法时间复杂度为log(n)时,不同底数对应的时间复杂度的倍数关系为常数,不会随着底数的不同而不同,因此可以将不同底数的对数函数所代表的时间复杂度,当作是同一类复杂度处理,即抽象成一类问题。

当然这里的底数2和3可以用a和b替代,a,b大于等于2,属于整数。a,b取值是如何确定的呢?

有点编程经验的都知道,分而治之的概念。排序算法中有一个叫做“归并排序”或者“合并排序”的算法,它用到的就是分而治之的思想,而它的时间复杂度就是N*logN,此算法采用的是二分法,所以可以认为对应的对数函数底数为2,也有可能是三分法,底数为3,以此类推。但是不可能我分数及负数。

说明:为了便于说明,本文时间复杂度一概省略 O 符号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

慕城南风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值