算法复杂度中的O(logN)底数是多少_时间复杂度o(logn)是以什么为底-CSDN博客

算法复杂度中的O(logN)底数是多少

问题

最近有好几学生问我,无论是计算机算法概论、还是数据结构书中,

关于算法的时间复杂度很多都用包含O(logN)这样的描述,但是没有明确说logN底数究竟是多少。



解答

算法中log级别的时间复杂度都是由于使用了分治思想,这个底数直接由分治的复杂度决定。
如果采用二分法,那么就会以2为底数,三分法就会以3为底数,其他亦然。
不过无论底数是什么,log级别的渐进意义是一样的。
也就是说该算法的时间复杂度的增长与处理数据多少的增长的关系是一样的。

我们先考虑O(logx(n))和O(logy(n)),x!=y,我们是在考虑n趋于无穷的情况。
求当n趋于无穷大时logx(n)/logy(n)的极限可以发现,极限等于lny/lnx,也就是一个常数,
也就是说,在n趋于无穷大的时候,这两个东西仅差一个常数。
所以从研究算法的角度log的底数不重要。

最后,结合上面,我也说一下关于大O的定义(算法导论28页的定义),
注意把这个定义和高等数学中的极限部分做比较,
显然可以发现,这里的定义正是体现了一个极限的思想,
假设我们将n0取一个非常大的数字,
显然,当n大于n0的时候,我们可以发现任意底数的一个对数函数其实都相差一个常数倍而已。
所以书上说写的O(logn)已经可以表达所有底数的对数了,就像O(n^2)一样。
没有非常严格的证明,不过我觉得这样说比较好理解,如果有兴趣证明,完全可以参照高数上对极限趋于无穷的证明。


### 实现快速幂算法 为了实现 \(X^N \mod 233333\) 的高效计算,可以采用快速幂算法。该算法的核心思想是利用指数的性质以及二分的思想减少乘法操作次数,从而将时间复杂度降至 \(O(\log N)\)[^1]。 以下是基于递归和迭代两种方式的具体实现: #### 方法一:递归实现 递归方法通过不断分解指数 \(N\) 来完成计算。当 \(N\) 是偶数时,可以通过平方的方式减半;当 \(N\) 是奇数时,则额外多乘一次底数 \(X\)。 ```cpp long long fastPow(long long base, long long exp, long long mod) { if (exp == 0) return 1; long long result = fastPow((base * base) % mod, exp / 2, mod); if (exp & 1) result = (result * base) % mod; return result; } ``` 上述代码中,`fastPow(base, exp, mod)` 函数实现了 \(base^{exp} \mod mod\) 的计算过程[^4]。 --- #### 方法二:迭代实现 相较于递归版本,迭代版更加节省栈空间,并且逻辑清晰易懂。核心在于逐位处理指数 \(N\) 的每一位二进制表示形式。 ```cpp long long fastPowIterative(long long base, long long exp, long long mod) { long long result = 1; while (exp > 0) { if (exp & 1) result = (result * base) % mod; base = (base * base) % mod; exp >>= 1; } return result; } ``` 此函数同样完成了 \(base^{exp} \mod mod\) 的计算,其中 `>>=` 表示右移一位的操作,相当于除以 2 取整[^3]。 --- ### 关键点解析 1. **取模优化** 在每一步计算过程中都及时对中间结果进行取模操作,这样可以有效防止数值溢出并保持计算精度。 2. **时间复杂度分析** 快速幂算法每次都将指数规模缩小一半,因此总的时间复杂度为 \(O(\log N)\)[^2]。 3. **适用场景扩展** 此类算法不仅适用于普通的整数幂运算,还可以推广至矩阵快速幂等领域,用于解决诸如斐波那契数列等问题。 ---
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值