图像处理——边缘检测算法 比较_比较不同图像的边缘检测的差别,分析原因。-CSDN博客

图像处理——边缘检测算法 比较

本文深入探讨了Prewitt算子、Sobel算子、Canny算子和LoG算子在图像边缘检测中的应用。详细解析了各算子的工作原理,如Prewitt和Sobel算子通过像素点邻域灰度差检测边缘;Canny算子采用双阈值策略,提高边缘检测的准确性;LoG算子结合高斯滤波,虽有模糊效果但能精确定位边缘细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:https://blog.csdn.net/KYJL888/article/details/78253053

Prewitt算子利用像素点上下、左右邻点灰度差,在边缘处达到极值检测边缘。对噪声具有平滑作用,定位精度不够高。
Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。

canny使用2种不同的阈值分别检测 强边缘 和 弱边缘,当且仅当 弱边缘 与 强边缘 相连时才将弱边缘包含在输出图像中。


log由于使用了高斯低通滤波器,因此卷积结果会产生一定的模糊,模糊程度正比于theta。当theta值比较小时位置精度很高,但会产生过多的边缘细节,而且该算子在噪声大得区域往往会产生过密的过零点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值