Magentic-One、AutoGen、LangGraph、CrewAI 或 OpenAI Swarm:哪种多 AI 代理框架最好? 生成式人工智能中的多人工智能代理主题正在升温,各大科技巨头都围绕它发布了一些框架。但是该选择哪种多人工智能代理框架呢?他们实在太多了!!随着 OpenAI 发布 Swarm 和微软的 Magentic-One,这个领域变得非常混乱。因此,为了消除任何疑问,我将尝试解释每个框架的主要功能、优缺点,让您决定哪个最适合您。我们将讨论
在大型语言模型LLM中使用私有数据 随着 2023 年大型语言模型的大规模兴起,许多“基于对话”的服务应运而生,使用户能够通过自然对话与数据和其他产品进行交互。我们现在处于一个 LLM 改变我们与各种数据和信息交互方式的时代。筛选无尽的搜索结果或解读复杂的用户界面的日子已经一去不复返了;现在,您只需要自然语言就可以开始探索。
使用强化学习训练神经网络玩俄罗斯方块 在 2024 年暑假假期期间,Tim学习并应用了Q-Learning (一种强化学习形式)来训练神经网络玩简化版的俄罗斯方块游戏。在本文中,我将详细介绍我是如何做到这一点的。我希望这对任何有兴趣将强化学习应用于新领域的人有所帮助!
两种分类代码:独热编码与标签编码 当你深入研究机器学习时,你遇到的第一个障碍就是如何处理非数字数据。这就是编码的作用所在——将分类数据转换成机器学习算法可以理解的东西。但问题是:并非所有编码都是平等的。
回归问题的等量分层 在同一个数据集中,我们可以看成是一个抽样体。然而,我们如果将这个抽样体分成两份,每一份依然保留他们的分布(将一个抽样集合合理地分成两个抽样集合),这是我们在训练中经常需要的。在本文中,我将尝试举例说明如何在保留分布比例的情况下对回归问题进行分割。让我们从基础开始。
在异常检测中利用分布统计python实现 异常检测是识别数据中不符合预期行为的罕见或异常模式的过程。异常检测的应用范围涵盖各个行业,从欺诈检测到识别制造设备中的故障,甚至发现医疗保健数据中的异常情况。为了有效地检测这些异常,我们可以利用统计特征来突出显示与预期状态的偏差。
K-means 聚类:Python 和 Scikit-learn实现 虽然深度学习算法无疑是当今最流行的机器学习算法,但还有更多算法。聚类是一种机器学习,您不需要向模型提供训练集,而是尝试在运行时从数据集中得出特征,以便以不同的方式构造数据集。它属于无监督机器学习算法。
C++ 与 Python(静态类型语言与动态语言) Python和C++到底有啥区别?在使用的时候有啥特殊的益处?这种问题的意义在于:如果对语言了解越清楚,越能够更加大胆地应用哪些极限功能,从而最大限度地发挥语言优势。这不是区区几句话能说清楚的。这里将对这个问题给以澄清。
集成技术综合指南:Bagging 和 Boosting 在机器学习中,集成技术是一种强大的方法,它可以结合多种模型的预测来提高准确性、减少方差并增强对未知数据的泛化能力。集成方法不依赖于单一模型,而是利用多种模型的综合能力来做出更稳健的预测。两种最流行的集成技术是bagging和boosting,这两种技术都被广泛用于提高模型(尤其是决策树)的性能。
如何使用 Tweepy (Python) 从 Twitter API 访问数据 Twitter API 允许您做很多事情,包括检索推文数据。为了访问这些数据,您需要一个开发者帐户。使用 Twitter API 应该很容易,但有时图片和简单的代码可以为您省去一些麻烦。
理解有放回和无放回抽样 (Python) 概率的模型很重要,比如有放回抽样和无放回抽样,这两个模型都拥有很强实用型,绝不能说说就算了,而是用程序如何实现的问题。本教程将深入探讨有放回和无放回抽样,并涉及这些概念在数据科学中的一些常见应用。与往常一样,本教程中使用的代码可在我的GitHub上找到。让我们开始吧!
ML 系列:第 40 节 — 最大似然MLE 的简单问题 最大似然估计 (MLE) 是统计学和机器学习中用于估计概率模型参数的基本技术。在本文中,我们将介绍一个使用 MLE 估计正态分布参数的简单示例。我们将使用 Python 进行实现和可视化。
ML 系列:第 41节 - 假设检验简介 在我们这个数据驱动的世界里,决策通常基于数据。假设检验在这个过程中起着至关重要的作用,无论是在商业决策、医疗保健领域、学术界还是质量改进的背景下。如果没有明确的假设和严格的假设检验,就有可能得出错误的结论并做出次优的决策。
最大似然估计 (MLE) 和最大后验估计 (MAP) 背后的直觉 在数据分析中,分析师不同,给出的方案也不同,这就导致对同一事务的分析,都是“正确”的,但精致程度不同,因而导致性能上的差异。本文将对不同水平的分析(MLE和MAP)进行对照,让读者自行理解其中的奥妙。