LLaMA-Factory 基于 LoRA 的 SFT 指令微调及相关功能梳理 自动评估模型生成效果,计算文本生成指标(如 BLEU 和 ROUGE)。微调完成后,可以动态加载 LoRA 微调结果,验证模型效果。文件,将数据集注册到系统中。
LLaMA-Factory QuickStart 流程详解 LLaMA-Factory 是一个整合主流高效训练与微调技术的框架,支持主流开源大模型(如 LLaMA、Qwen、Baichuan 等),提供便捷的接口和工作台,降低大模型微调门槛。确保硬件环境满足需求(如 RTX 3090/4090)。LLaMA-Factory 支持。
Neo4j 构建文本类型的知识图谱 使用 Neo4j 构建文本类型的知识图谱的核心步骤包括文本数据的预处理、实体和关系的提取、将数据导入图数据库,以及利用 Cypher 进行查询和分析。通过结合 NLP 技术,能够从文本中自动提取出有价值的信息,并构建一个高效的图结构,以支持复杂的查询和知识发现。
Python--WinError 2 的常见解决方案 报错信息:FileNotFoundError: [WinError 2] 系统找不到指定的文件。这个错误提示说明在调用时,系统找不到指定的文件或可执行程序。在代码中,这个问题主要是因为找不到 Java JAR 文件,也就是用于计算 METEOR 分数的评估工具。
T5--详解 T5的架构基于,并且与BERT、GPT不同,它是一个Encoder-Decoder(编码器-解码器)结构。它主要用于生成任务,如摘要、翻译、问答、生成式文本分类等。T5 是一种功能强大且灵活的Transformer模型,它能够统一处理各种NLP任务,并通过预训练在大规模数据集上取得了卓越的性能。其“文本到文本”的框架让T5在文本生成、翻译、分类、问答等多种任务上表现优异。通过Hugging Face的库,可以方便地加载和使用T5模型来处理各种NLP任务。
GRU--详解 # 超参数output_size = input_size # 输出大小和输入大小相同,都是字符集大小# 损失函数和优化器GRU 是一种强大的循环神经网络架构,在处理序列数据(如文本生成、语言模型等)时非常有效。其结构相比 LSTM 简化了门控机制,但仍能有效捕捉长时间依赖。通过PyTorch等框架,可以快速构建并训练GRU模型,并应用于诸如文本生成等任务。
BART--详解 # 加载BART分词器和预训练的文本摘要模型# 输入待生成摘要的长文本text = """"""# 对输入文本进行编码# 使用BART进行文本摘要生成# 解码生成的摘要文本BART模型概述:BART是结合了BERT和GPT优势的序列到序列生成模型,广泛用于文本生成任务,如摘要、翻译、对话生成等。基本结构:由双向编码器(类似BERT)和自回归解码器(类似GPT)组成。通过多种扰动输入的方法进行去噪自编码器训练。经典代码:使用Hugging Face的。
BERT--详解 BERT模型概述:BERT是基于Transformer的双向预训练模型,擅长捕捉上下文语义信息,广泛应用于NLP任务。基本结构:主要由输入层、多层Transformer Encoder组成,通过MLM和NSP进行预训练。经典代码:使用Hugging Face的库,简单实现BERT的文本处理。生成任务示例:尽管BERT主要用于理解任务,但可以通过MLM进行词填充等简单生成任务。
Transformer--详解 Transformer凭借其并行化的结构、自注意力机制以及位置编码技术,能够非常有效地处理长距离依赖问题。它被广泛应用于各类自然语言处理任务,尤其是在大规模预训练语言模型中(如BERT、GPT等)。
Python--解决占用重复内存问题 通过 TrainingArguments 设置 save_safetensors=False 来禁用 safetensors,这样可以避免共享张量保存时引发的错误。如果希望手动控制模型保存,也可以调用 model.save_pretrained() 来保存模型。
RNN--详解 循环神经网络 (Recurrent Neural Network, RNN) 是一种专门用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN 具有循环结构,能够处理时间序列和其他顺序依赖的数据。其关键在于可以利用前一个时刻的信息,通过隐状态 (Hidden State)在时间步长上进行传递,从而具有记忆性。下面的代码定义了一个基本的 RNN 模型。使用一个嵌入层和一个简单的 RNN 层来对文本进行分类。输出的隐藏状态将传递到全连接层来预测情感标签。# 嵌入层# RNN层# 全连接层。
Python 基础知识点详细整理 简介:解释 Python 的特点,解释其跨平台性、解释性和面向对象特性。安装与配置:如何安装 Python,搭建 Python 环境,使用pip安装库。集成开发环境 (IDE):如 PyCharm、VSCode、Jupyter 等的使用。
解决Transformer训练中GPT-2模型报错:样本填充问题与tokenizer冲突处理 这个问题是因为GPT-2模型在设计时没有为填充(padding)定义一个专用的填充标记(pad token)。由于GPT-2是基于自回归的结构,它在训练时不需要像BERT那样进行填充。要解决这个问题,可以手动为GPT-2设置一个填充标记(pad token)并相应调整填充行为。
深度学习--自动化打标签 数据准备:人工标记一部分数据,并分成训练集和验证集。模型微调:通过羊驼模型微调,让模型学习数据的标签分布。预测与对比:模型在验证集上进行预测,并与人工标签对比,使用准确率和 F1-score 等指标评估模型性能。自动打标签:模型通过自动化方式对未标注数据进行打标签。通过这种方法,能够有效利用大模型进行大规模数据的标签生成,同时减少人工标注的成本和工作量。
在Conda环境中,查看某个包是否安装的方式 这些方法可以快速确定某个包是否已经在 Conda 环境中安装。打开终端或命令提示符(确保激活了对应的 Conda 环境)。conda list | grep 包名。conda activate 你的环境名。对于 Windows 用户,可以使用。如果包已安装,会显示已安装的版本。conda search 包名。conda list 包名。>>> import 包名。如果包不存在,将会收到。
Python--解决从Hugging Face的服务器下载某个预训练模型或其相关的文件问题 一.错误信息:ValueError: Connection error, and we cannot find the requested files in the cached path. Please try again or make sure your Internet connection is on.这个错误信息表明正在尝试从 Hugging Face 的服务器下载某个预训练模型或其相关的文件,但由于网络连接问题无法成功下载,也无法从缓存中找到该文件。
Python--导入模块报错处理 根据需要替换 openai_object 的用法,例如 openai.OpenAIObject 等。pip install openai==<目标版本号>错误,并使代码正常运行。如果仍然无法解决,建议参考。文件的依赖信息,进一步排查问题源头。通过这些步骤,可以有效地解决。库的官方文档,或查看。