斯坦福大学网站:https://cs.stanford.edu/courses/schedules/2017-2018.autumn.php
Course | Title | Instructor | Time | Room |
Introduction to Computing at Stanford | Smith | by arrangement | ||
Practical Unix | Zelenski/Sarka | TTh 1:30-2:50 | STLC 104 | |
Personal Finance for Engineers | Nash | T 4:30-5:50 | 200-034 | |
Problem-solving for the CS Technical Interview | Cain/Lee | T 3:00-4:50 | STLC 111 | |
AI, Entrepreneurship & Society in 21st Cntry & Bey | Ganguli/Taneja | M 4:30-5:50 | HerrinT175 | |
Computers and Photography: From Capture to Sharing | Garcia-Molina | MW 2:30-4:20 | Gates 505 | |
Using Tech for Good | Cain | MWF 12:30-1:20 | STLC115 | |
Great Discoveries and Inventions in Computing | Hennessy | TTh 9:00-10:20 | STLC118 | |
Big Data: Tools & Techniques, Discoveries & Pitfal | Widom | TTh 1:30-2:50 | 320-105 | |
Mathematical Foundations of Computing | Schwarz | MWF 3:00-4:20 | Nvidia Aud | |
Mathematical Problem-solving Strategies | Schwarz | T 3:00-5:50 | STLC115 | |
Introduction to Computers | Young | MWF 1:30-2:20 | HerrinT175 | |
Programming Methodology | Sahami | MWF 1:30-2:20 | Hewlett200/201 | |
Programming Methodology in JavaScript | Cain | MWF 10:30-11:20 | 300-300 | |
Programming Abstractions | Lee | MWF 12:30-1:20 | Nvidia Aud | |
Programming Abstractions (Accelerated) | Stepp | MWF 12:30-1:20 | 420-041 | |
Computer Organization and Systems | Zelenski/Gregg | MF 1:30-2:50 | CubberleyAud | |
Object-Oriented Systems Design | Young | MW 3:00-4:20 | 530-127 | |
Intro to Probability for Computer Scientists | Piech | MWF 3:30-4:20 | Hewlett200 | |
Principles of Computer Systems | Cain | MWF 1:30-2:50 | Skilling Aud | |
Computer Vision: Foundations and Applications | Niebles Duque/ | TTh 1:30-2:50 | 200-002 | |
Web Applications | Rosenblum | MWF 10:30-11:20 | 200-002 | |
Introduction to Computer Networking | Levis/McKeown | MW 3:00-4:20 | Skilling Aud | |
Introduction to Databases | Bailis | TTh 3:00-4:20 | Nvidia Aud | |
Introduction to Game Design and Development | James/Riedel-K | TTh 4:30-5:50 | 380-380C | |
Introduction to Human-Computer Interaction Design | Landay | MW 11:30-1:20 | Hewlett 201 | |
Introduction to Computer Graphics and Imaging | Fedkiw | TTh 12:00-1:20 | Nvidia Aud | |
Introduction to Automata and Complexity Theory | Reingold | TTh 10:30-11:50 | Skilling Aud | |
Logic and Automated Reasoning | Genesereth | TTh 12:00-1:20 | Gates B01 | |
Design and Analysis of Algorithms | Wootters | MW 1:30-2:50 | 370-370 | |
Effective Leadership in High-tech | Finley/Goldfei | W 4:30-5:50 | 300-303 | |
Senior Project | (none listed) | by arrangement | ||
Writing Intensive Senior Project | (none listed) | by arrangement | ||
Programming Service Project | (none listed) | by arrangement | ||
iOS Application Development | Hegarty | MW 4:30-5:50 | Hewlett200 | |
Teaching Computer Science | Sahami/Conklin | M 4:30-6:20 | 370-370 | |
Additional Topics in Teaching Computer Science | Sahami/Conklin | TTh 4:30-5:20 | MitchB67 | |
Independent Work | (none listed) | by arrangement | ||
Independent Work | (none listed) | by arrangement | ||
Law for Computer Science Professionals | Hansen | Th 4:30-5:50 | Lathrop 299 | |
Exploring Computational Journalism | Hamilton/Agraw | T 1:30-3:20 | JSK Fell Garage | |
Great Ideas in Computer Science | Gregg | TTh 1:30-2:50 | 160-319 | |
Artificial Intelligence: Principles & Techniques | Liang/Ermon | MW 1:30-2:50 | Nvidia Aud | |
Analysis of Networks | Leskovec | TTh 1:30-2:50 | Nvidia Aud | |
Machine Learning | Ng/Boneh | MW 9:30-10:50 | Nvidia Aud | |
Deep Learning | Ng/Katanforoos | M 11:30-12:50 | Hewlett 102 | |
Decision Making under Uncertainty | Kochenderfer | MW 1:30-2:50 | GatesB01 | |
Embedded Systems Workshop | Levis/Horowitz | MW 10:30-12:20 | HerrinT185 | |
Programming Languages | Crichton | MW 4:30-5:50 | Skilling Aud | |
Distributed Systems | Mazieres | MW 3:00-4:20 | Thornton 102 | |
Randomized Algorithms and Probabilistic Analysis | Valiant | TTh 10:30-11:50 | STLC115 | |
Deep Learning in Genomics and Biomedicine | Kundaje/Zou | MW 3:00-4:20 | Hewlett201 | |
Reps and Algor for Computational Molecular Bio | Altman | TTh 4:30-5:50 | Gates B01 | |
Comp Biology: Struct & Org of Biomolecules & Cells | Dror | TTh 3:00-4:20 | Shriram104 | |
Departmental Lecture Series | Ousterhout | MW 4:30-5:50 | 370-370 | |
Cloud Computing Seminar | Chou | T 4:30-5:50 | Skilling Aud | |
Parallel Computing Research Project | Aiken | TTh 3:00-4:20 | 200-219 | |
Data for Sustainable Development | Ermon/Lobell | T 1:30-4:20 | Shriram 108 | |
Topics in Advanced Robotic Manipulation | Bohg | TTh 10:30-11:50 | Education 207 | |
Representation Learning in Computer Vision | Savarese/Zahir | M 1:30-4:20 | Campbell 126 | |
Advanced Survey of Reinforcement Learning | Brunskill | MW 1:30-2:50 | HerrinT195 | |
Safe and Interactive Robotics | Sadigh | TTh 3:00-4:20 | McMurtry 360 | |
Computer Graphics: Animation and Simulation | James | TTh 1:30-2:50 | GatesB12 | |
Cloud Computing Technology | Kozyrakis/Zaha | MW 10:30-12:20 | 380-380W | |
Large-Scale Neural Net Modeling for Neuroscience | Yamins | MW 4:30-5:50 PM | Lathrop299 | |
Human-Computer Interaction Research | Bernstein | MW 3:00-4:20 | Littlefield107 | |
Curricular Practical Training | (none listed) | by arrangement | ||
Curricular Practical Training | (none listed) | by arrangement | ||
Curricular Practical Training | (none listed) | by arrangement | ||
Part-time Curricular Practical Training | (none listed) | by arrangement | ||
Computer Laboratory | (none listed) | by arrangement | ||
Independent Database Project | (none listed) | by arrangement | ||
Independent Project | (none listed) | by arrangement | ||
Independent Project | (none listed) | by arrangement | ||
Computation and Cognition: Probabilistic Approach | Goodman | TTh 1:30-2:50 PM | 200-305 | |
Data Visualization | Agrawala | MW 4:30-5:50 PM | Lathrop 282 | |
Music, Computing and Design I | Wang | MW 3:30-5:20 | Knoll217 | |
Advanced Reading and Research | (none listed) | by arrangement | ||
Advanced Reading and Research | (none listed) | by arrangement | ||
Seminar in Artificial Intelligence in Healthcare | Dror | Th 4:30-5:20 | Hewlett200 | |
Discussion in Tech for Good | Sahami | T 4:30-6:20pm | 200-107 | |
Mobile Computing Seminar | James/Riedel-K | T 4:30-5:50 | 420-041 | |
Human-Computer Interaction Seminar | Bernstein | F 12:30-2:20 | Gates B01 | |
Media Innovation | Grimes | T 12:00-1:20 | Gates 176 | |
TGR Project | (none listed) | by arrangement | ||
TGR Dissertation | (none listed) | by arrangement |
机器学习(Machine Learning,简称 ML)和计算机视觉(Computer Vision,简称 CV)是非常令人着迷、非常酷炫、颇具挑战性同时也是涉及面很广的领域。本文整理了机器学习和计算机视觉的相关学习资源,目的是帮助许多和我一样希望深刻理解“智能”背后原理的人,用最为高效的方式学习最为前沿的技术和知识。
另外请见我后一篇博客里列的数据挖掘的学习资源。
wikipedia.org,历史,领域概述,资源链接:
Machine learning,介绍了ML所处理的问题、常用算法、应用、软件等,右侧列举了细分条目;
List of machine learning concepts,Category:Machine learning,列举出了更多ML相关概念和条目;
Computer vision,同样,介绍了CV所处理的问题、常用方法、应用等,底部列举了细分条目;
List of computer vision topics,Category:Computer vision,列举了更多CV相关条目。
大学课程、在线教程:
Stanford 关于ML和CV计算机课程(按推荐排序):
1、Andrew NG机器学习课程网易公开课:http://open.163.com/special/opencourse/machinelearning.html
2、机器学习课程教学官网: http://cs229.stanford.edu/syllabus.html
3、Coursera最新版:https://www.coursera.org/learn/machine-learning/
cs229T Statistical Learning Theory,
cs231N Convolutional Neural Networks for Visual Recognition,
cs231A Computer Vision:From 3D Recontruct to Recognition,
cs231B The Cutting Edge of Computer Vision,
cs221 Artificial Intelligence: Principles & Techniques,
cs131 Computer Vision: Foundations and Applications,
cs369L A Theoretical Perspective on Machine Learning,
cs205A Mathematical Methods for Robotics, Vision & Graph,
这些课程大都可以下载PPT,更多课程请见Courses | Stanford Computer Science,Open class room的ML课程Machine Learning,Unsupervised Feature Learning and Deep Learning,Coursera的ML课程:Machine Learning,以及Stanford在线教程Deep learning tuorial;
更多大学课程可以用“machine learning course”或“computer vision course”为关键字搜索,这里是Google的国内镜像,这样就不需要FanQiang了。
专著、书籍:
ML:
机器学习,周志华,2016;
统计学习方法,李航,2012;
Deep Learning: Methods and Applications, Li Deng and Dong Yu, 2014;
Introduction to Machine Learning (3rd ed.), Ethem Alpaydin, 2014;
Machine Learning: An Algorithmic Perspective (2nd ed.), Stephen Marsland, 2015;
Deep Learning,一本在线书籍;
Neural Networks and Learning Machines (3rd ed.), Simon O. Haykin, 2008;有中文译本:神经网络与机器学习;
Pattern Recognition and Machine Learning, Christopher Bishop, 2006;有中文译本:模式识别与机器学习;
Machine Learning: a Probabilistic Perspective, Kevin P. Murphy, 2012;
CV:
Concise Computer Vision: An Introduction into Theory and Algorithms, Klette, Reinhard, 2014;
Computer Vision: Algorithms and Applications, Szeliski, Richard, 2011;有中文译本:计算机视觉——算法与应用;
Multiple View Geometry in Computer Vision (2nd ed.), Richard Hartley and Andrew Zisserman, 2004;
An Invitation to 3-D Vision: From Images to Geometric Models, Yi Ma, Stefano Soatto, Jana Kosecka, S. Shankar Sastry, 2004;
Robot vision, Berthold K. P. Horn, 1986;有中文译本:机器视觉;
Image Processing, Analysis, and Machine Vision (3rd ed.), Milan Sonka, Vaclav Hlavac, Roger Boyle, 2007;有中文译本:图像处理、分析与机器视觉;
推荐一个非常好的搜索英文电子书的网站:Library Genesis。
学术论文:
ML、CV领域的顶级期刊:TPAMI,IJCV,学术会议:ACL,CVPR,ICML,ICCV,NIPS,ECCV,ACCV等;
CVPapers 对CV领域学术论文做了很好的整理;
ImageNet 每年举办的图像识别比赛很能代表CV最高水平,MS COCO是类似比赛,KITTI上有很多数据以及CV算法的排名,这里是一个数据集的列表,这里是CV数据集;
arXiv.org,很多最新论文首先发表在这里;
当然还是推荐Google Scholar,这里是一个镜像网站。
学习网站:
deeplearning.net:一个非常好的机器学习网站,有dataset、software、reading list连接;
VisionBib.Com:学术大牛整理的CV资源;
CVonline有一个非常全面的资源链接;
新智元和机器之心是很好的机器学习资讯平台,另外推荐一些微信公众号:机器学习研究会,程序媛的日常。
程序、库:
OpenCV:一个C++视觉库,使用广泛;
Torch, Theano:两个很强大的支持CUDA显卡加速的Python机器学习库;
Caffe:很多研究者使用的Deep Learning库;
R语言:一个方便开发机器学习程序的环境;