斯坦福大学网站:https://cs.stanford.edu/courses/schedules/2017-2018.autumn.php

Course

Title

Instructor

Time

Room

cs1C

Introduction to Computing at Stanford

Smith

by arrangement


cs1U

Practical Unix

Zelenski/Sarka

TTh 1:30-2:50

STLC 104

cs7

Personal Finance for Engineers

Nash

T 4:30-5:50

200-034

cs9

Problem-solving for the CS Technical Interview

Cain/Lee

T 3:00-4:50

STLC 111

cs28

AI, Entrepreneurship & Society in 21st Cntry & Bey

Ganguli/Taneja

M 4:30-5:50

HerrinT175

cs45N

Computers and Photography: From Capture to Sharing

Garcia-Molina

MW 2:30-4:20

Gates 505

cs50

Using Tech for Good

Cain

MWF 12:30-1:20

STLC115

cs56N

Great Discoveries and Inventions in Computing

Hennessy

TTh 9:00-10:20

STLC118

cs102

Big Data: Tools & Techniques, Discoveries & Pitfal

Widom

TTh 1:30-2:50

320-105

cs103

Mathematical Foundations of Computing

Schwarz

MWF 3:00-4:20

Nvidia Aud

cs103A

Mathematical Problem-solving Strategies

Schwarz

T 3:00-5:50

STLC115

cs105

Introduction to Computers

Young

MWF 1:30-2:20

HerrinT175

cs106A

Programming Methodology

Sahami

MWF 1:30-2:20

Hewlett200/201

cs106AJ

Programming Methodology in JavaScript

Cain

MWF 10:30-11:20

300-300

cs106B

Programming Abstractions

Lee

MWF 12:30-1:20

Nvidia Aud

cs106X

Programming Abstractions (Accelerated)

Stepp

MWF 12:30-1:20

420-041

cs107

Computer Organization and Systems

Zelenski/Gregg

MF 1:30-2:50

CubberleyAud

cs108

Object-Oriented Systems Design

Young

MW 3:00-4:20

530-127

cs109

Intro to Probability for Computer Scientists

Piech

MWF 3:30-4:20

Hewlett200

cs110

Principles of Computer Systems

Cain

MWF 1:30-2:50

Skilling Aud

cs131

Computer Vision: Foundations and Applications

Niebles Duque/

TTh 1:30-2:50

200-002

cs142

Web Applications

Rosenblum

MWF 10:30-11:20

200-002

cs144

Introduction to Computer Networking

Levis/McKeown

MW 3:00-4:20

Skilling Aud

cs145

Introduction to Databases

Bailis

TTh 3:00-4:20

Nvidia Aud

cs146

Introduction to Game Design and Development

James/Riedel-K

TTh 4:30-5:50

380-380C

cs147

Introduction to Human-Computer Interaction Design

Landay

MW 11:30-1:20

Hewlett 201

cs148

Introduction to Computer Graphics and Imaging

Fedkiw

TTh 12:00-1:20

Nvidia Aud

cs154

Introduction to Automata and Complexity Theory

Reingold

TTh 10:30-11:50

Skilling Aud

cs157

Logic and Automated Reasoning

Genesereth

TTh 12:00-1:20

Gates B01

cs161

Design and Analysis of Algorithms

Wootters

MW 1:30-2:50

370-370

cs183E

Effective Leadership in High-tech

Finley/Goldfei

W 4:30-5:50

300-303

cs191

Senior Project

(none listed)

by arrangement


cs191W

Writing Intensive Senior Project

(none listed)

by arrangement


cs192

Programming Service Project

(none listed)

by arrangement


cs193P

iOS Application Development

Hegarty

MW 4:30-5:50

Hewlett200

cs198

Teaching Computer Science

Sahami/Conklin

M 4:30-6:20

370-370

cs198B

Additional Topics in Teaching Computer Science

Sahami/Conklin

TTh 4:30-5:20

MitchB67

cs199

Independent Work

(none listed)

by arrangement


cs199P

Independent Work

(none listed)

by arrangement


cs202

Law for Computer Science Professionals

Hansen

Th 4:30-5:50

Lathrop 299

cs206

Exploring Computational Journalism

Hamilton/Agraw

T 1:30-3:20

JSK Fell Garage

cs208E

Great Ideas in Computer Science

Gregg

TTh 1:30-2:50

160-319

cs221

Artificial Intelligence: Principles & Techniques

Liang/Ermon

MW 1:30-2:50

Nvidia Aud

cs224W

Analysis of Networks

Leskovec

TTh 1:30-2:50

Nvidia Aud

cs229

Machine Learning

Ng/Boneh

MW 9:30-10:50

Nvidia Aud

cs230

Deep Learning

Ng/Katanforoos

M 11:30-12:50

Hewlett 102

cs238

Decision Making under Uncertainty

Kochenderfer

MW 1:30-2:50

GatesB01

cs241

Embedded Systems Workshop

Levis/Horowitz

MW 10:30-12:20

HerrinT185

cs242

Programming Languages

Crichton

MW 4:30-5:50

Skilling Aud

cs244B

Distributed Systems

Mazieres

MW 3:00-4:20

Thornton 102

cs265

Randomized Algorithms and Probabilistic Analysis

Valiant

TTh 10:30-11:50

STLC115

cs273B

Deep Learning in Genomics and Biomedicine

Kundaje/Zou

MW 3:00-4:20

Hewlett201

cs274

Reps and Algor for Computational Molecular Bio

Altman

TTh 4:30-5:50

Gates B01

cs279

Comp Biology: Struct & Org of Biomolecules & Cells

Dror

TTh 3:00-4:20

Shriram104

cs300

Departmental Lecture Series

Ousterhout

MW 4:30-5:50

370-370

cs309A

Cloud Computing Seminar

Chou

T 4:30-5:50

Skilling Aud

cs315B

Parallel Computing Research Project

Aiken

TTh 3:00-4:20

200-219

cs325B

Data for Sustainable Development

Ermon/Lobell

T 1:30-4:20

Shriram 108

cs326

Topics in Advanced Robotic Manipulation

Bohg

TTh 10:30-11:50

Education 207

cs331B

Representation Learning in Computer Vision

Savarese/Zahir

M 1:30-4:20

Campbell 126

cs332

Advanced Survey of Reinforcement Learning

Brunskill

MW 1:30-2:50

HerrinT195

cs333

Safe and Interactive Robotics

Sadigh

TTh 3:00-4:20

McMurtry 360

cs348C

Computer Graphics: Animation and Simulation

James

TTh 1:30-2:50

GatesB12

cs349D

Cloud Computing Technology

Kozyrakis/Zaha

MW 10:30-12:20

380-380W

cs375

Large-Scale Neural Net Modeling for Neuroscience

Yamins

MW 4:30-5:50 PM

Lathrop299

cs376

Human-Computer Interaction Research

Bernstein

MW 3:00-4:20

Littlefield107

cs390A

Curricular Practical Training

(none listed)

by arrangement


cs390B

Curricular Practical Training

(none listed)

by arrangement


cs390C

Curricular Practical Training

(none listed)

by arrangement


cs390P

Part-time Curricular Practical Training

(none listed)

by arrangement


cs393

Computer Laboratory

(none listed)

by arrangement


cs395

Independent Database Project

(none listed)

by arrangement


cs399

Independent Project

(none listed)

by arrangement


cs399P

Independent Project

(none listed)

by arrangement


cs428

Computation and Cognition: Probabilistic Approach

Goodman

TTh 1:30-2:50 PM

200-305

cs448B

Data Visualization

Agrawala

MW 4:30-5:50 PM

Lathrop 282

cs476A

Music, Computing and Design I

Wang

MW 3:30-5:20

Knoll217

cs499

Advanced Reading and Research

(none listed)

by arrangement


cs499P

Advanced Reading and Research

(none listed)

by arrangement


cs522

Seminar in Artificial Intelligence in Healthcare

Dror

Th 4:30-5:20

Hewlett200

cs53SI

Discussion in Tech for Good

Sahami

T 4:30-6:20pm

200-107

cs544

Mobile Computing Seminar

James/Riedel-K

T 4:30-5:50

420-041

cs547

Human-Computer Interaction Seminar

Bernstein

F 12:30-2:20

Gates B01

cs581

Media Innovation

Grimes

T 12:00-1:20

Gates 176

cs801

TGR Project

(none listed)

by arrangement


cs802

TGR Dissertation

(none listed)

by arrangement



机器学习(Machine Learning,简称 ML)和计算机视觉(Computer Vision,简称 CV)是非常令人着迷、非常酷炫、颇具挑战性同时也是涉及面很广的领域。本文整理了机器学习和计算机视觉的相关学习资源,目的是帮助许多和我一样希望深刻理解“智能”背后原理的人,用最为高效的方式学习最为前沿的技术和知识。

另外请见我后一篇博客里列的数据挖掘的学习资源。

 

wikipedia.org,历史,领域概述,资源链接:

Machine learning,介绍了ML所处理的问题、常用算法、应用、软件等,右侧列举了细分条目;

List of machine learning conceptsCategory:Machine learning,列举出了更多ML相关概念和条目;

Computer vision,同样,介绍了CV所处理的问题、常用方法、应用等,底部列举了细分条目;

List of computer vision topicsCategory:Computer vision,列举了更多CV相关条目。

 

大学课程、在线教程

Stanford 关于ML和CV计算机课程(按推荐排序):


1、Andrew NG机器学习课程网易公开课:http://open.163.com/special/opencourse/machinelearning.html

2、机器学习课程教学官网: http://cs229.stanford.edu/syllabus.html


3、Coursera最新版:https://www.coursera.org/learn/machine-learning/



cs229 Machine Learning

cs229T Statistical Learning Theory

cs231N Convolutional Neural Networks for Visual Recognition

cs231A Computer Vision:From 3D Recontruct to Recognition

cs231B The Cutting Edge of Computer Vision

cs221 Artificial Intelligence: Principles & Techniques

cs131 Computer Vision: Foundations and Applications

cs369L A Theoretical Perspective on Machine Learning

cs205A Mathematical Methods for Robotics, Vision & Graph

cs231MMobile Computer Vision

这些课程大都可以下载PPT,更多课程请见Courses | Stanford Computer Science,Open class room的ML课程Machine LearningUnsupervised Feature Learning and Deep Learning,Coursera的ML课程:Machine Learning,以及Stanford在线教程Deep learning tuorial

更多大学课程可以用“machine learning course”或“computer vision course”为关键字搜索,这里是Google的国内镜像,这样就不需要FanQiang了。

 

专著、书籍

ML:

机器学习,周志华,2016;

统计学习方法,李航,2012;

Deep Learning: Methods and Applications, Li Deng and Dong Yu, 2014;

Introduction to Machine Learning (3rd ed.), Ethem Alpaydin, 2014;

Machine Learning: An Algorithmic Perspective (2nd ed.), Stephen Marsland, 2015;

Deep Learning,一本在线书籍;

Neural Networks and Learning Machines (3rd ed.), Simon O. Haykin, 2008;有中文译本:神经网络与机器学习;

Pattern Recognition and Machine Learning, Christopher Bishop, 2006;有中文译本:模式识别与机器学习;

Machine Learning: a Probabilistic Perspective, Kevin P. Murphy, 2012;

CV:

Concise Computer Vision: An Introduction into Theory and Algorithms, Klette, Reinhard, 2014;

Computer Vision: Algorithms and Applications, Szeliski, Richard, 2011;有中文译本:计算机视觉——算法与应用;

Multiple View Geometry in Computer Vision (2nd ed.), Richard Hartley and Andrew Zisserman, 2004;

An Invitation to 3-D Vision: From Images to Geometric Models,  Yi Ma, Stefano Soatto, Jana Kosecka, S. Shankar Sastry, 2004;

Robot vision, Berthold K. P. Horn, 1986;有中文译本:机器视觉;

Image Processing, Analysis, and Machine Vision (3rd ed.), Milan Sonka, Vaclav Hlavac, Roger Boyle, 2007;有中文译本:图像处理、分析与机器视觉;

推荐一个非常好的搜索英文电子书的网站:Library Genesis

 

学术论文

ML、CV领域的顶级期刊:TPAMIIJCV,学术会议:ACLCVPRICMLICCVNIPSECCVACCV等;

CVPapers 对CV领域学术论文做了很好的整理;

ImageNet 每年举办的图像识别比赛很能代表CV最高水平,MS COCO是类似比赛,KITTI上有很多数据以及CV算法的排名,这里是一个数据集的列表,这里是CV数据集;

arXiv.org,很多最新论文首先发表在这里;

当然还是推荐Google Scholar,这里是一个镜像网站。

 

学习网站

deeplearning.net:一个非常好的机器学习网站,有datasetsoftwarereading list连接;

VisionBib.Com:学术大牛整理的CV资源;

CVonline有一个非常全面的资源链接;

新智元机器之心是很好的机器学习资讯平台,另外推荐一些微信公众号:机器学习研究会,程序媛的日常。

 

程序、库

OpenCV:一个C++视觉库,使用广泛;

TorchTheano:两个很强大的支持CUDA显卡加速的Python机器学习库;

Caffe:很多研究者使用的Deep Learning库;

R语言:一个方便开发机器学习程序的环境;