有效的括号(栈、字符串)

给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。 有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。

示例 1:

输入:s = "()"
输出:true

示例 2:

输入:s = "()[]{}"
输出:true

示例 3:

输入:s = "(]"
输出:false

示例 4:

输入:s = "([)]"
输出:false

示例 5:

输入:s = "{[]}"
输出:true

提示:

  • 1 <= s.length <= 104
  • s 仅由括号 '()[]{}' 组成

解答:

class Solution {
    public boolean isValid(String s) {
        char[] parentheses = { '(', '[', '{', ')', ']', '}' };
        int i = 0;
        char c;
        int[] sum = { 0, 0, 0 };
        Stack<Integer> top = new Stack<Integer>();
        while (i < s.length()) {
            c = s.charAt(i);
            for (int j = 0; j <= 2; j++) {
                if (c == parentheses[j]) {
                    top.push(j);
                    sum[j]++;
                } else if (c == parentheses[j + 3]) {
                    if (top.size() == 0 || top.peek() != j) {
                        return false;
                    }
                    top.pop();
                    sum[j]--;
                } else {
                }
            }
            i++;
        }
        for (int j = 0; j <= 2; j++) {
            if (sum[j] != 0) {
                return false;
            }
        }
        return true;
    }
}

有效的数独(数组、哈希表)

请你判断一个 9x9 的数独是否有效。只需要** 根据以下规则** ,验证已经填入的数字是否有效即可。

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

数独部分空格内已填入了数字,空白格用 '.' 表示。 注意:

  • 一个有效的数独(部分已被填充)不一定是可解的。
  • 只需要根据以上规则,验证已经填入的数字是否有效即可。

示例 1: 输入:board =
[["5","3",".",".","7",".",".",".","."] ,["6",".",".","1","9","5",".",".","."] ,[".","9","8",".",".",".",".","6","."] ,["8",".",".",".","6",".",".",".","3"] ,["4",".",".","8",".","3",".",".","1"] ,["7",".",".",".","2",".",".",".","6"] ,[".","6",".",".",".",".","2","8","."] ,[".",".",".","4","1","9",".",".","5"] ,[".",".",".",".","8",".",".","7","9"]] 输出:true 示例 2: 输入:board =
[["8","3",".",".","7",".",".",".","."] ,["6",".",".","1","9","5",".",".","."] ,[".","9","8",".",".",".",".","6","."] ,["8",".",".",".","6",".",".",".","3"] ,["4",".",".","8",".","3",".",".","1"] ,["7",".",".",".","2",".",".",".","6"] ,[".","6",".",".",".",".","2","8","."] ,[".",".",".","4","1","9",".",".","5"] ,[".",".",".",".","8",".",".","7","9"]] 输出:false 解释:除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。

提示:

  • board.length == 9
  • board[i].length == 9
  • board[i][j] 是一位数字或者 '.'

解答:

class Solution {
    public boolean isValidSudoku(char[][] board) {
        boolean[][] row = new boolean[9][9];
        boolean[][] col = new boolean[9][9];
        boolean[][] block = new boolean[9][9];
        for (int i = 0; i < 9; i++) {
            for (int j = 0; j < 9; j++) {
                if (board[i][j] != '.') {
                    int num = board[i][j] - '1';
                    int blockIndex = i / 3 * 3 + j / 3;
                    if (row[i][num] || col[j][num] || block[blockIndex][num]) {
                        return false;
                    } else {
                        row[i][num] = true;
                        col[j][num] = true;
                        block[blockIndex][num] = true;
                    }
                }
            }
        }
        return true;
    }
}

不同的子序列(字符串、动态规划)

给定一个字符串 s** **和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。 字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是) 题目数据保证答案符合 32 位带符号整数范围。

示例 1: 输入:s = "rabbbit", t = "rabbit" 输出:3 解释: 如下图所示, 有 3 种可以从 s 中得到 "rabbit" 的方案。 rabbbit rabbbit rabbbit 示例 2: 输入:s = "babgbag", t = "bag" 输出:5 解释: 如下图所示, 有 5 种可以从 s 中得到 "bag" 的方案。 babgbag babgbag babgbag babgbag babgbag

提示:

  • 0 <= s.length, t.length <= 1000
  • s 和 t 由英文字母组成

解答:

class Solution {
    public int numDistinct(String s, String t) {
        int n1 = s.length();
        int n2 = t.length();
        int[][] dp = new int[n1 + 1][n2 + 1];
        for (int i = 0; i <= n1; i++) {
            dp[i][0] = 1;
        }
        for (int i = 1; i <= n1; i++) {
            for (int j = 1; j <= n2; j++) {
                if (s.charAt(i - 1) == t.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[n1][n2];
    }
}

本文内容到此结束了, 如有收获欢迎点赞👍收藏💖关注✔️,您的鼓励是我最大的动力。 如有错误❌疑问💬欢迎各位大佬指出。 主页共饮一杯无的博客汇总👨‍💻

保持热爱,奔赴下一场山海。🏃🏃🏃