2.1 MAPREDUCE 示例编写及编程规范
2.1.1 编程规范
(1)用户编写的程序分成三个部分:Mapper,Reducer,Driver(提交运行mr程序的客户端)
(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)
(3)Mapper的输出数据是KV对的形式(KV的类型可自定义)
(4)Mapper中的业务逻辑写在map()方法中
(5)map()方法(maptask进程)对每一个<K,V>调用一次
(6)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
(7)Reducer的业务逻辑写在reduce()方法中
(8)Reducetask进程对每一组相同k的<k,v>组调用一次reduce()方法
(9)用户自定义的Mapper和Reducer都要继承各自的父类
(10)整个程序需要一个Drvier来进行提交,提交的是一个描述了各种必要信息的job对象
1.7.2 wordcount示例编写
需求:在一堆给定的文本文件中统计输出每一个单词出现的总次数
(1)定义一个mapper类
//首先要定义四个泛型的类型 //keyin: LongWritable valuein: Text //keyout: Text valueout:IntWritable
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ //map方法的生命周期: 框架每传一行数据就被调用一次 //key : 这一行的起始点在文件中的偏移量 //value: 这一行的内容 @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //拿到一行数据转换为string String line = value.toString(); //将这一行切分出各个单词 String[] words = line.split(" "); //遍历数组,输出<单词,1> for(String word:words){ context.write(new Text(word), new IntWritable(1)); } } } |
(2)定义一个reducer类
//生命周期:框架每传递进来一个kv 组,reduce方法被调用一次 @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { //定义一个计数器 int count = 0; //遍历这一组kv的所有v,累加到count中 for(IntWritable value:values){ count += value.get(); } context.write(key, new IntWritable(count)); } } |
(3)定义一个主类,用来描述job并提交job
public class WordCountRunner { //把业务逻辑相关的信息(哪个是mapper,哪个是reducer,要处理的数据在哪里,输出的结果放哪里……)描述成一个job对象 //把这个描述好的job提交给集群去运行 public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job wcjob = Job.getInstance(conf); //指定我这个job所在的jar包 //wcjob.setJar("/home/hadoop/wordcount.jar"); wcjob.setJarByClass(WordCountRunner.class); wcjob.setMapperClass(WordCountMapper.class); wcjob.setReducerClass(WordCountReducer.class); //设置我们的业务逻辑Mapper类的输出key和value的数据类型 wcjob.setMapOutputKeyClass(Text.class); wcjob.setMapOutputValueClass(IntWritable.class); //设置我们的业务逻辑Reducer类的输出key和value的数据类型 wcjob.setOutputKeyClass(Text.class); wcjob.setOutputValueClass(IntWritable.class); //指定要处理的数据所在的位置 FileInputFormat.setInputPaths(wcjob, "hdfs://hdp-server01:9000/wordcount/data/big.txt"); //指定处理完成之后的结果所保存的位置 FileOutputFormat.setOutputPath(wcjob, new Path("hdfs://hdp-server01:9000/wordcount/output/")); //向yarn集群提交这个job boolean res = wcjob.waitForCompletion(true); System.exit(res?0:1); } |
2.2 MAPREDUCE程序运行模式
2.2.1 本地运行模式
(1)mapreduce程序是被提交给LocalJobRunner在本地以单进程的形式运行
(2)而处理的数据及输出结果可以在本地文件系统,也可以在hdfs上
(3)怎样实现本地运行?写一个程序,不要带集群的配置文件(本质是你的mr程序的conf中是否有mapreduce.framework.name=local以及yarn.resourcemanager.hostname参数)
(4)本地模式非常便于进行业务逻辑的debug,只要在eclipse中打断点即可
如果在windows下想运行本地模式来测试程序逻辑,需要在windows中配置环境变量:
%HADOOP_HOME% = d:/hadoop-2.6.1
%PATH% = %HADOOP_HOME%\bin
并且要将d:/hadoop-2.6.1的lib和bin目录替换成windows平台编译的版本
2.2.2 集群运行模式
(1)将mapreduce程序提交给yarn集群resourcemanager,分发到很多的节点上并发执行
(2)处理的数据和输出结果应该位于hdfs文件系统
(3)提交集群的实现步骤:
A、将程序打成JAR包,然后在集群的任意一个节点上用hadoop命令启动
$ hadoop jar wordcount.jar cn.itcast.bigdata.mrsimple.WordCountDriver inputpath outputpath
B、直接在linux的eclipse中运行main方法
(项目中要带参数:mapreduce.framework.name=yarn以及yarn的两个基本配置)
C、如果要在windows的eclipse中提交job给集群,则要修改YarnRunner类
mapreduce程序在集群中运行时的大体流程:
附:在windows平台上访问hadoop时改变自身身份标识的方法之二:
3. MAPREDUCE中的Combiner
(1)combiner是MR程序中Mapper和Reducer之外的一种组件
(2)combiner组件的父类就是Reducer
(3)combiner和reducer的区别在于运行的位置:
Combiner是在每一个maptask所在的节点运行
Reducer是接收全局所有Mapper的输出结果;
(4) combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量
具体实现步骤:
1、 自定义一个combiner继承Reducer,重写reduce方法
2、 在job中设置: job.setCombinerClass(CustomCombiner.class)
(5) combiner能够应用的前提是不能影响最终的业务逻辑
而且,combiner的输出kv应该跟reducer的输入kv类型要对应起来