Oracle_spatial的函数 一sdo_Geom包的函数: 用于表示两个几何对象的关系(结果为True/False)的函数:RELATE,WITHIN_DISTANCE 验证的函数:VALIDATE_GEOMETRY_WITH_CONTEXT, VALIDATE_LAYER_WITH_CONTEXT 单个对象操作的函数:SDO_ARC_DENSIFY, SDO_AREA,SDO_BUFFER,SDO_ CENTROID,SDO_CONVEXHULL, SDO_LENGTH,SDO_MAX_MBR_ ORDINATE, SDO_MIN_MBR_ORDINATE,SDO_MBR,SDO_POINTONSURFACE 需两个对象操作操作的函数:SDO_DISTANCE,SDO_DIFFERENCE,SDO_INTERSECTION,SDO_UNION,SDO_XOR 1、sdo_Geom.Relate sdo_Geom.Relate(sdo_Geometry1, ‘MASK’, sod_Geometry2, tolerance ):用于判断一个几何体与另一个几何体的关系,我们用于判断当前点是否在某一个面(省份面、县市面、乡镇面)上。   参数说明:     sdo_Geometry1,sdo_Geometry2为空间数据对应的几何对象。     Tolerance: 容许的精度范围;    MASK参数:     Anyinteract: sdo_Geometry2落在sdo_Geometry1面上包括在边上。     Contains: sdo_Geometry2完全包含在sdo_Geometry1几何对象中,并且两个几何对象的边没有交叉。     Coveredby: sdo_Geometry1完全包含在sdo_Geometry2中,并且这两个几何对象的边有一个或多个点相互重叠。     Covers: sdo_Geometry2完全包含在sdo_Geometry1中,并且这两个几何对象的边有一个或多个点相互重叠。     Disjoint: 两个几何没有重叠交叉点,也没有共同的边。     Equal: 两个几何是相等的。     Inside: sdo_Geometry1完全包含在sdo_Geometry2几何对象中,并且两个几何对象的边没有交叉。     On: sdo_Geometry1的边和内部的线完全在sdo_Geometry2上。     Overlapbdydisjoint: 两个几何对象交迭,但是边没有交叉。     Overlapbdyintersect: 两个几何对象交迭,并且边有部分交叉。     Touch: 两个几何对象有共同的边,但没有交叉。 SELECT ct.gwm_fid, ct.name FROM i_exch_s ct, sales_regions comp WHERE SDO_GEOM.RELATE(ct.gwm_geometry, 'INSIDE', comp.geom, 0.5) = 'INSIDE' AND comp.gwm_fid = 50076218 ORDER BY ct.gwm_fid; SELECT ct.gwm_fid, ct.name FROM i_exch_s ct, sales_regions comp WHERE SDO_GEOM.RELATE(ct.gwm_geometry, 'ANYINTERACT', comp.geom, 0.5) = 'INSIDE' AND comp.gwm_fid = 50076218 ORDER BY ct.gwm_fid; --RELATE函数补充SDO_RELATE操作符 SELECT sra.gwm_fid, SDO_GEOM.RELATE(sra.geom, 'DETERMINE', srb.geom, 0.5) relationship FROM sales_regions srb, sales_regions sra WHERE srb.gwm_fid = 50076218 AND sra.gwm_fid <> 50076218 AND SDO_RELATE(sra.geom, srb.geom, 'mask=TOUCH+OVERLAPBDYDISJOINT+OVERLAPBDYINTERSECT') = 'TRUE' ORDER BY sra.gwm_fid; 2、SDO_GEOM. WITHIN_DISTANCE SDO_GEOM.WITHIN_DISTANCE( geom1 IN SDO_GEOMETRY, dim1 IN SDO_DIM_ARRAY, dist IN NUMBER, geom2 IN SDO_GEOMETRY, dim2 IN SDO_DIM_ARRAY [, units IN VARCHAR2] ) RETURN VARCHAR2; or SDO_GEOM.WITHIN_DISTANCE( geom1 IN SDO_GEOMETRY, dist IN NUMBER, geom2 IN SDO_GEOMETRY, tol IN NUMBER [, units IN VARCHAR2] ) RETURN VARCHAR2;   参数说明:     sdo_Geometry1,sdo_Geometry2为空间数据对应的几何对象。     Tolerance: 容许的精度范围;     Dist: 指定的距离;     Unit: 用于表示距离的单位,可能是Unit=M/ Unit=KM等长度单位,但必须是SDO_DIST_UNITS表中列举出来的单位之一。 SELECT SDO_GEOM.WITHIN_DISTANCE(c_b.shape, m.diminfo, 1, c_d.shape, m.diminfo) FROM cola_markets c_b, cola_markets c_d, user_sdo_geom_metadata m WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE' AND c_b.name = 'cola_b' AND c_d.name = 'cola_d'; SELECT sdo_geom.within_distance(c.shape,50,d.shape,'0.5') FROM cola_markets c,cola_markets d WHERE c.name = 'cola_d' and d.name='cola_c'; 3、sdo_Geom.SDO_BUFFER SDO_BUFFER ( geometry IN SDO_GEOMETRY, distance IN NUMBER, tolerance IN NUMBER [, params IN VARCHAR2] ) RETURNS an SDO_GEOMETRY 其中 geometry是一个参数,表示将被缓冲的SDO_GEOMETRY对象。 distance是一个参数,表示缓冲输入的几何体的数值距离。 tolerance是一个参数,表示容差。 params是一个可选的第四个参数,表示两个参数:unit=和arc_ tolerance=。 unit=参数表示距离的单位。你可以通过查阅MDSYS.SDO_DIST_UNITS表来获得单位的可能取值。 如果几何体是大地测量的(也就是说,如果几何体的SDO_SRID被赋值为大地测量SRID,如8307或者8625),那么 arc_tolerance=参数就是必须的。在大地测量的空间里,弧度是不允许的。然而,它们可以近似地用线 表示。弧线的容差参数表示弧线与它的近似线的最大距离。 注:弧线容差通常要大于几何体的容差。 在大地测量数据中,容差是以米为单位来指定的。而arc_tolerance总是使用parameter_string中指定的单位。 例子: --创建表 CREATE TABLE sales_regions AS SELECT gwm_fid, SDO_GEOM.SDO_BUFFER(b.gwm_geometry, 0.25, 0.5, 'arc_tolerance=0.005') geom FROM i_exch_s b where rownum<10; 由于i_exch_s表中的srid为null,所以arc_tolerance不能指定单位 --插元数据 INSERT INTO user_sdo_geom_metadata SELECT 'SALES_REGIONS', 'GEOM', diminfo, srid FROM user_sdo_geom_metadata WHERE table_name = 'I_EXCH_S' --建空间索引 CREATE INDEX sr_sidx ON sales_regions(geom) INDEXTYPE IS mdsys.spatial_index; 4、sdo_Geom.SDO_DISTANCE SDO_DISTANCE函数的语法如下: SDO_DISTANCE ( geometry1 IN SDO_GEOMETRY, geometry2 IN SDO_GEOMETRY, tolerance IN NUMBER [, params IN VARCHAR2] ) RETURNS a NUMBER 其中 geometry1和geometry2是起始的两个参数,它们表示SDO_GEOMETRY对象。 tolerance表示数据集的容差。对于大地测量的数据,它们通常是0.5或者0.1(0.5米或者是0.1米)。对于非大地测量的数据,它将被设置为合适的值,来避免四舍五入引起的错误。 params是可选的第四个参数,是形如'unit='的字符串。这个参数指定了返回距离的单位。可以通过查看MDSYS.SDO_DIST_UNITS表获得可能的单位值。 -- Return the distance between two geometries. SELECT SDO_GEOM.SDO_DISTANCE(c_b.shape, c_d.shape, 0.005) FROM cola_markets c_b, cola_markets c_d WHERE c_b.name = 'cola_b' AND c_d.name = 'cola_d'; SELECT ct.gwm_fid, ct.name FROM i_exch_s comp, l_interest_s ct WHERE comp.gwm_fid = 52065726 AND SDO_GEOM.SDO_DISTANCE(ct.gwm_geometry, comp.gwm_geometry, 0.5 /*',unit=mile'*/) < 50 ORDER BY ct.gwm_fid; 在SQL中使用带有SDO_WITHIN_DISTANCE空间操作符的SDO_DISTANCE函数 SELECT ct.gwm_fid, ct.name, SDO_GEOM.SDO_DISTANCE(ct.gwm_geometry, comp.gwm_geometry, 0.5 /*,'unit=yard'*/) distance FROM i_exch_s comp, l_interest_s ct WHERE comp.gwm_fid = 52065726 AND SDO_WITHIN_DISTANCE(ct.gwm_geometry, comp.gwm_geometry, 'distance=50') = 'TRUE' ORDER BY ct.gwm_fid; 对于三维的大地测量几何体,计算的距离通常是二维的距离 5、几何组合函数(sdo_Geom.) A SDO_INTERSECTION B:返回A和B共有的区域。 A SDO_UNION B:返回A和B覆盖的区域的并。 A SDO_DIFFERENCE B:返回被A覆盖的但是不被B覆盖的区域。 A SDO_XOR B:返回A和B不相交的区域。这个函数与(A SDO_UNION B) SDO_DIFFERENCE (A SDO_INTERSECTION B)是等同的。 每一个函数都有如下语法: SDO_ ( Geometry_A IN SDO_GEOMETRY, Geometry_B IN SDO_GEOMETRY, Tolerance IN NUMBER ) RETURNS SDO_GEOMETRY Geometry_A 和Geometry_B是SDO_GEOMETRY对象(拥有相同的SRID)。 Tolerance是几何对象的容差值 注: 在Oracle 11g中,几何函数只适用于二维几何体。你不能对两个三维对象进行并操作 5.1 SDO_INTERSECTION CREATE TABLE sales_intersection_zones AS SELECT sra.gwm_fid id1, srb.gwm_fid id2, SDO_GEOM.SDO_INTERSECTION(sra.geom, srb.geom, 0.5) intsxn_geom FROM sales_regions srb, sales_regions sra WHERE sra.gwm_fid <> srb.gwm_fid AND SDO_RELATE(sra.geom, srb.geom, 'mask=anyinteract') = 'TRUE'; 5.2 SDO_UNION SELECT count(*) FROM (SELECT SDO_GEOM.SDO_UNION(sra.geom, srb.geom, 0.5) geom FROM sales_regions srb, sales_regions sra WHERE sra.gwm_fid = 50076211 and srb.gwm_fid = 50076218) srb, i_exch_s sra WHERE SDO_RELATE(sra.gwm_geometry, srb.geom, 'mask=anyinteract') = 'TRUE'; CREATE TABLE sales_region_coverage (coverage SDO_GEOMETRY); DECLARE coverage SDO_GEOMETRY := NULL; BEGIN FOR g IN (SELECT geom FROM sales_regions) LOOP coverage := SDO_GEOM.SDO_UNION(coverage, g.geom, 0.5); END LOOP; INSERT INTO sales_region_coverage values (coverage); COMMIT; END; 5.3 SDO_DIFFERENCE SDO_DIFFERENCE函数是从第一个几何体中减去第二个几何体。结果,它返回的是只属于第一个几何体的区域。注意,它只有在以下情况下才有意义: 第一个和第二个几何体都必须有区域(也就是说,区域为多边形,多重多边形等)。 第二个几何体是一个多边形或者一条线并且第一个几何体是一条线。 第一个几何体是一个点。 如果这些条件不满足,SDO_DIFFERENCE操作的结果是返回第一个几何体。 --竞争对手区域2和销售区域6的SDO_DIFFERENCE操作 CREATE TABLE exclusive_region_for_comp_2 AS SELECT SDO_GEOM.SDO_DIFFERENCE(b.geom, a.geom, 0.5) geom FROM sales_regions sr, competitors_sales_regions csr WHERE csr.id = 2 and sr.id = 6; --在竞争对手的独属区域内确定客户 SELECT ct.id, ct.name FROM exclusive_region_for_comp_2 excl, customers ct WHERE SDO_RELATE(ct.location, excl.geom, 'mask=anyinteract') = 'TRUE' ORDER BY ct.id; --将以上两个合并为一个 SELECT ct.id, ct.name FROM sales_regions sr, competitors_sales_regions csr, customers ct WHERE csr.id = 2 AND sr.id = 6 AND SDO_RELATE(ct.location, SDO_GEOM.SDO_DIFFERENCE(csr.geom, sr.geom, 0.5), 'mask=anyinteract') = 'TRUE' ORDER BY ct.id; 5.4 SDO_XOR --不被共享的客户 SELECT count(*) FROM (SELECT SDO_GEOM.SDO_XOR(a.geom, b.geom, 0.5) geom FROM sales_regions srb, sales_regions sra WHERE sra.id = 51 and srb.id = 43) srb, customers sra WHERE SDO_RELATE(sra.location, srb.geom, 'mask=anyinteract') = 'TRUE'; 6、几何分析函数(sdo_Geom.) 二维的或者三维的几何体上使用这些函数。这些函数有如下的PL/SQL通用语法 Function_name ( Geometry IN SDO_GEOMETRY, tolerance IN NUMBER [, units_params IN VARCHAR2] ) RETURN NUMBER 其中 Geometry表示将被分析的几何体。 Tolerance表示在这个分析中的容差。 units_params是可选的第三个参数,表示返回的面积、长度和体积的单位。这个参数的 形式是'unit='。可以查看MDSYS.SDO_DIST_UNITS表的length函数和 MDSYS.SDO_AREA_UNITS表的面积函数获得这些单位的可能取值 6.1 SDO_AREA select name,sdo_geom.sdo_area(a.gwm_geometry,0.05) from p_region_area a; 6.2 SDO_LENGTH 此函数返回一条线的长度和多边形、平面和立方体的周长。对于点,这个函数返回0。 select name,sdo_geom.sdo_length(a.gwm_geometry,0.05) from p_region_area a; 6.3 SDO_VOLUME 如果输入的几何体是三维的立方体或者是多重立方体,那么这个函数将一个几何体和一个容差值作为参数并且返回体积。对所有其他的几何体类型,这个函数返回0。 7、MBR(最小边界矩形) 函数 sdo_Geom. 7.1 SDO_MBR SDO_GEOM.SDO_MBR( geom IN SDO_GEOMETRY [, dim IN SDO_DIM_ARRAY] ) RETURN SDO_GEOMETRY; l SDO_MBR函数把SDO_GEOMETRY作为一个参数并且计算这个几何体的MBR。它返回的是一个SDO_GEOMETRY对象。 l 如果输入的是一个点,那么SDO_MBR函数返回的是一个点几何体。 l 如果输入的是一条平行于X或Y轴的线串,那么函数返回一个线性几何体。 否则,函数返回输入几何体的MBR,将它作为一个SDO_GEOMETRY对象。 l 对于一个输入的三维对象,SDO_MBR函数返回一个范围,也就是说,返回这个三 维几何体在三个维度上的最小值和最大值。 -- Return the minimum bounding rectangle of cola_d (a circle). SELECT SDO_GEOM.SDO_MBR(c.shape, m.diminfo) FROM cola_markets c, user_sdo_geom_metadata m WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE' AND c.name = 'cola_d'; 注: SDO_AGGR_UNION, SDO_AGGR_CENTROID和SDO_CONVEXHULL这些函数只能在二维几何体上使用。 7.2SDO_MIN_MBR_ORDINATE与 SDO_MAX_MBR_ORDINATE 除了获得两个维数上的范围,有时你可能对获得指定的维数上的范围感兴趣。你可以通过SDO_MIN_MBR_ORDINATE和SDO_MAX_MBR_ORDINATE函数来获得指定的维数上的范围,这两个函数返回指定维数上几何体的最小和最大坐标值。 也可以在三维对象上使用这些函数。 SELECT SDO_GEOM.SDO_MIN_MBR_ORDINATE(sr.geom, 1) min_extent, SDO_GEOM.SDO_MAX_MBR_ORDINATE(sr.geom, 1) max_extent FROM sales_regions sr; SELECT SDO_GEOM.SDO_MIN_MBR_ORDINATE(sr.geom, 3) min_extent, SDO_GEOM.SDO_MAX_MBR_ORDINATE(sr.geom, 3) max_extent FROM sales_regions sr; 8、各种几何分析函数 sdo_Geom. ( Geometry IN SDO_GEOMETRY, Tolerance IN NUMBER ) RETURENS SDO_GEOMETRY 8.1 SDO_CONVEXHULL --该函数可用于简化面的顶点(与原来的面仍保持近似) select name,sdo_geom.sdo_convexhull(a.gwm_geometry,0.5) from p_region_area a; 在Oracle 11g中,SDO_CONVEXHULL函数只适用于二维的几何体 8.2 SDO_CENTROID 在Oracle 11g中,SDO_CENTROID函数只适用于二维的几何体 点返回的仍是一个点,线返回的是空值,面返回的是该面的质心。 8.3 SDO_POINTONSURFACE 既然一个多边形的质心有可能在也有可能不在这个多边形内,那么在几何体表面的其他点放置一个标签也可能是有用的。在创建多边形地图的一些类型时,这个也是必要的。你可以通过使用SDO_POINTONSURFACE函数来得到这样的点。 也可以在三维的几何体上使用这个函数。 SDO_POINTONSURFACE函数的唯一保证是返回的点在穿过的多边形的边界上或者内部(在目前的实现中,它实际返回的是多边形几何体的SDO_ORDINATE_ARRAY中的第一个点)。 SDO_GEOM.SDO_POINTONSURFACE( geom1 IN SDO_GEOMETRY, dim1 IN SDO_DIM_ARRAY ) RETURN SDO_GEOMETRY; or SDO_GEOM.SDO_POINTONSURFACE( geom1 IN SDO_GEOMETRY, tol IN NUMBER ) RETURN SDO_GEOMETRY; 9、聚合函数 非免费 sdo_Geom. SDO_AGGR_MBR 可用于三维几何体;SDO_AGGR_UNION、SDO_AGGR_CENTROID和SDO_CONVEXHULL函数只适用于二维的几何体 9.1 聚合MBR函数(SDO_AGGR_MBR) 假设你想找到SDO_GEOMETRY对象集覆盖的范围(通常,在创建索引之前,需要使用这个信息来填充USER_SDO_GEOM_METADATA视图) 9.2 SDO_AGGR_UNION 聚合函数SDO_AGGR_UNION计算几何体集合的并。并以SDO_GEOMETRY对象返回。 9.3 SDO_AGGR_CONVEXHULL 如果所有输入的几何体的所有顶点是共线的或者如果只有一个顶点(一个点),那么SDO_AGGR_CONVEXHULL返回空值 9.4 SDO_AGGR_CENTROID SDO_AGGR_CENTROID函数允许你计算客户任意组合的质心 10、SDO_GEOM.SDO_ARC_DENSIFY SDO_GEOM.SDO_ARC_DENSIFY( geom IN SDO_GEOMETRY, dim IN SDO_DIM_ARRAY params IN VARCHAR2 ) RETURN SDO_GEOMETRY; or SDO_GEOM.SDO_ARC_DENSIFY( geom IN SDO_GEOMETRY, tol IN NUMBER params IN VARCHAR2 ) RETURN SDO_GEOMETRY; -- Arc densification of the circle cola_d SELECT c.name, SDO_GEOM.SDO_ARC_DENSIFY(c.shape, m.diminfo, 'arc_tolerance=0.05') FROM cola_markets c, user_sdo_geom_metadata m WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE' AND c.name = 'cola_d'; 10、验证函数(sdo_Geom.) 10.1 VALIDATE_GEOMETRY_WITH_CONTEXT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT( Geometry IN SDO_GEOMETRY, DimInfo IN SDO_DIM_ARRAY --该参数指定了维度(范围)和容差值的信息 ) RETURN VARCHAR2; or SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT( Geometry IN SDO_GEOMETRY, tolerance IN NUMBER ) RETURN VARCHAR2; 10.2 VALIDATE_LAYER_WITH_CONTEXT SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT( geom_table IN VARCHAR2, --验证的表 geom_column IN VARCHAR2, --验证的列 result_table IN VARCHAR2 --验证结果存放的表 [, commit_interval IN NUMBER]); --验证结果每隔多少个提交一次 二sdo_util包的函数 1、sdo_util.remove_duplicate_vertices 删除重复的顶点 SDO_UTIL.REMOVE_DUPLICATE_VERTICES geometry IN SDO_GEOMETRY, tolerance IN NUMBER ) RETURN SDO_GEOMETRY; 2、sdo_util.extract(只能提取二维) SDO_UTIL.EXTRACT( geometry IN SDO_GEOMETRY, --提取的对象 element IN NUMBER --提取哪个元素 [, ring IN NUMBER] --环号,可选 ) RETURN SDO_GEOMETRY; 3、sdo_util.append 在给定的容差值内,这个函数将两个输入的几何体合成为单个几何体。 SDO_UTIL.APPEND( geom1 IN SDO_GEOMETRY, geom2 IN SDO_GEOMETRY ) RETURN SDO_GEOMETRY 4、sdo_util.GetNumElem 获取元素的数目(即由几个元素组成) SDO_UTIL.GETNUMELEM( geometry IN SDO_GEOMETRY ) RETURN NUMBER; 5、sdo_util.GetNumVertices 获取对象的顶点数目 SDO_UTIL.GETNUMVERTICES( geometry IN SDO_GEOMETRY ) RETURN NUMBER; 6、sdo_util.getvertices SDO_UTIL.GETVERTICES( geometry IN SDO_GEOMETRY ) RETURN VERTEX_SET_TYPE; 7、SDO_UTIL.CIRCLE_POLYGON 返回一个圆 SDO_UTIL.CIRCLE_POLYGON( center_longitude IN NUMBER, center_latitude IN NUMBER, radius IN NUMBER, arc_tolerance IN NUMBER ) RETURN SDO_GEOMETRY; SELECT SDO_UTIL.CIRCLE_POLYGON(-71.34937, 42.46101, 100, 5) FROM DUAL; 8、SDO_UTIL.ELLIPSE_POLYGON 返回一个椭圆 SDO_UTIL.ELLIPSE_POLYGON( center_longitude IN NUMBER, center_latitude IN NUMBER, semi_major_axis IN NUMBER, semi_minor_axis IN NUMBER, azimuth IN NUMBER, arc_tolerance IN NUMBER ) RETURN SDO_GEOMETRY; SELECT SDO_UTIL.ELLIPSE_POLYGON(-71.34937, 42.46101, 100, 50, 90, 5)FROM DUAL; 9、SDO_UTIL.CONVERT_UNIT 单位转换 SDO_UTIL.CONVERT_UNIT( input_value IN NUMBER, from_unit IN VARCHAR2, to_unit IN VARCHAR2 ) RETURN NUMBER; SELECT SDO_UTIL.CONVERT_UNIT(1, 'Radian', 'Degree') FROM DUAL; 10、wkt、wkb与geometry互转与验证 Ø SDO_UTIL.FROM_WKBGEOMETRY Ø SDO_UTIL.FROM_WKTGEOMETRY Ø SDO_UTIL.TO_WKBGEOMETRY Ø SDO_UTIL.TO_WKTGEOMETRY Ø SDO_UTIL.VALIDATE_WKBGEOMETRY Ø SDO_UTIL.VALIDATE_WKTGEOMETRY DECLARE wkbgeom BLOB; wktgeom CLOB; val_result VARCHAR2(5); geom_result SDO_GEOMETRY; geom SDO_GEOMETRY; BEGIN SELECT c.shape INTO geom FROM cola_markets c WHERE c.name = 'cola_b'; -- To WBT/WKT geometry wkbgeom := SDO_UTIL.TO_WKBGEOMETRY(geom); wktgeom := SDO_UTIL.TO_WKTGEOMETRY(geom); DBMS_OUTPUT.PUT_LINE('To WKT geometry result = ' || TO_CHAR(wktgeom)); -- From WBT/WKT geometry geom_result := SDO_UTIL.FROM_WKBGEOMETRY(wkbgeom); geom_result := SDO_UTIL.FROM_WKTGEOMETRY(wktgeom); -- Validate WBT/WKT geometry val_result := SDO_UTIL.VALIDATE_WKBGEOMETRY(wkbgeom); DBMS_OUTPUT.PUT_LINE('WKB validation result = ' || val_result); val_result := SDO_UTIL.VALIDATE_WKTGEOMETRY(wktgeom); DBMS_OUTPUT.PUT_LINE('WKT validation result = ' || val_result); END; 11、GML与GEOMETRY转换 SDO_UTIL.TO_GMLGEOMETRY( thegeom IN SDO_GEOMETRY ) RETURN CLOB; SELECT TO_CHAR(SDO_UTIL.TO_GMLGEOMETRY(shape)) AS GmlGeometry FROM COLA_MARKETS c WHERE c.name = 'cola_b'; 12、SDO_UTIL.SIMPLIFY 根据输入的阈值来简化输入的对象 SDO_UTIL.SIMPLIFY( geometry IN SDO_GEOMETRY, threshold IN NUMBER tolerance IN NUMBER DEFAULT 0.0000005 ) RETURN SDO_GEOMETRY; SELECT SDO_UTIL.SIMPLIFY( SDO_GEOMETRY( 3302, -- line string, 3 dimensions (X,Y,M), 3rd is linear ref. dimension NULL, NULL, SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments SDO_ORDINATE_ARRAY( 2,2,0, -- Starting point - Exit1; 0 is measure from start. 2,4,2, -- Exit2; 2 is measure from start. 8,4,8, -- Exit3; 8 is measure from start. 12,4,12, -- Exit4; 12 is measure from start. 12,10,NULL, -- Not an exit; measure automatically calculated and filled. 8,10,22, -- Exit5; 22 is measure from start. 5,14,27) -- Ending point (Exit6); 27 is measure from start. ), 6, -- threshold value for geometry simplification 0.5 -- tolerance ) FROM DUAL; 13、SDO_UTIL.RECTIFY_GEOMETRY 纠正有错误的对象并正确输出 SDO_UTIL.RECTIFY_GEOMETRY( geometry IN SDO_GEOMETRY, tolerance IN NUMBER ) RETURN SDO_GEOMETRY; SELECT SDO_UTIL.RECTIFY_GEOMETRY(shape, 0.005) FROM COLA_MARKETS c WHERE c.name = 'cola_b'; 14、SDO_UTIL.PREPARE_FOR_TTS与SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS 在不同的Oracle数据库之间传输数据可通过表空间。而为了保证表空间上的表的空间索引也被传输,需要执行这些函数SDO_UTIL.PREPARE_FOR_TTS(在传输表空间前执行)与SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS(在表空间导出后执行) 例子:创建一个dmp文件,从一个源数据库中传输表空间tbs。 首先:从一个源数据库中传输表空间tbs Sqlplus spatial/ spatial Execute SDO_UTIL.PREPARE_FOR_TTS(‘TBS’) Connect system/manager as sysdba Execute dbms_tts.transport_set_check(‘TBS’,true); Alter tablespace TBS read only; Exit; Exp spatial/ spatial transport_ tablespace=y tablespaces=TBS file=trans_ts.dmp 然后导入 ixp spatial/ spatial transport_ tablespace=y file=trans_ts.dmp datafiles=’sdo_tts.dbf’ tablespaces=tbs Sqlplus sys/password Alter tablespace TBS read write; Connect spatial/ spatial; Exec SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS 15、sdo_util.extract3d 提取三维对象的元素 16、sdo_util.sdo_concat_lines 连接两个线串 SDO_UTIL.CONCAT_LINES( geom1 IN SDO_GEOMETRY, geom2 IN SDO_GEOMETRY ) RETURN SDO_GEOMETRY; 17、sdo_util.sdo_reverse_linestring 倒转一条线串中的顶点的顺序 SDO_UTIL.REVERSE_LINESTRING( geometry IN SDO_GEOMETRY ) RETURN SDO_GEOMETRY; 18、sdo_util.sdo_polygontoline 将多边形转换为线串几何体 SDO_UTIL.POLYGONTOLINE( geometry IN SDO_GEOMETRY ) RETURN SDO_GEOMETRY; 15到18非免费 三 sdo_lrs包 Subprograms for Creating and Editing Geometric Segments 1、SDO_LRS.DEFINE_GEOM_SEGMENT(过程) 语法: SDO_LRS.DEFINE_GEOM_SEGMENT( geom_segment IN OUT SDO_GEOMETRY [, start_measure IN NUMBER, end_measure IN NUMBER]); or SDO_LRS.DEFINE_GEOM_SEGMENT( geom_segment IN OUT SDO_GEOMETRY, dim_array IN SDO_DIM_ARRAY [, start_measure IN NUMBER, end_measure IN NUMBER]); 功能:根据起始点和终止点测量值计算出没有测量的点 例子: -- Test the LRS procedures. DECLARE geom_segment SDO_GEOMETRY; line_string SDO_GEOMETRY; dim_array SDO_DIM_ARRAY; result_geom_1 SDO_GEOMETRY; result_geom_2 SDO_GEOMETRY; result_geom_3 SDO_GEOMETRY; BEGIN SELECT a.route_geometry into geom_segment FROM lrs_routes a WHERE a.route_name = 'Route1'; SELECT m.diminfo into dim_array from user_sdo_geom_metadata m WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'; -- Define the LRS segment for Route1. This will populate any null measures. -- No need to specify start and end measures, because they are already defined in the geometry. SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment, dim_array); SELECT a.route_geometry INTO line_string FROM lrs_routes a WHERE a.route_name = 'Route1'; -- Split Route1 into two segments. SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2); -- Concatenate the segments that were just split. result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array, result_geom_2, dim_array); -- Update and insert geometries into table, to display later. UPDATE lrs_routes a SET a.route_geometry = geom_segment WHERE a.route_id = 1; INSERT INTO lrs_routes VALUES( 11, 'result_geom_1', result_geom_1 ); INSERT INTO lrs_routes VALUES( 12, 'result_geom_2', result_geom_2 ); INSERT INTO lrs_routes VALUES( 13, 'result_geom_3', result_geom_3 ); END; 2、SDO_LRS.REDEFINE_GEOM_SEGMENT(过程) 语法: SDO_LRS.REDEFINE_GEOM_SEGMENT( geom_segment IN OUT SDO_GEOMETRY [, start_measure IN NUMBER, end_measure IN NUMBER]); or SDO_LRS.REDEFINE_GEOM_SEGMENT( geom_segment IN OUT SDO_GEOMETRY, dim_array IN SDO_DIM_ARRAY [, start_measure IN NUMBER, end_measure IN NUMBER]); 功能:重新定义几何体(可进行单位转换) 例子: -- Redefine geometric segment to "convert" miles to kilometers DECLARE geom_segment SDO_GEOMETRY; dim_array SDO_DIM_ARRAY; BEGIN SELECT a.route_geometry into geom_segment FROM lrs_routes a WHERE a.route_name = 'Route1'; SELECT m.diminfo into dim_array from user_sdo_geom_metadata m WHERE m.table_name = 'LRS_ROUTES' AND m.column_name ='ROUTE_GEOMETRY'; -- "Convert" mile measures to kilometers (27 * 1.609 = 43.443). SDO_LRS.REDEFINE_GEOM_SEGMENT (geom_segment, dim_array, 0, -- Zero starting measure: LRS segment starts at start of route. 43.443); -- End of LRS segment. 27 miles = 43.443 kilometers. -- Update and insert geometries into table, to display later. UPDATE lrs_routes a SET a.route_geometry = geom_segment WHERE a.route_id = 1; END; 3、SDO_LRS.CLIP_GEOM_SEGMENT 语法: SDO_LRS.CLIP_GEOM_SEGMENT( geom_segment IN SDO_GEOMETRY, start_measure IN NUMBER, end_measure IN NUMBER, tolerance IN NUMBER DEFAULT 1.0e-8 ) RETURN SDO_GEOMETRY; or SDO_LRS.CLIP_GEOM_SEGMENT( geom_segment IN SDO_GEOMETRY, dim_array IN SDO_DIM_ARRAY, start_measure IN NUMBER, end_measure IN NUMBER ) RETURN SDO_GEOMETRY; 功能:截取指定的一段 例子: -- Clip a piece of Route1. SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10) FROM lrs_routes WHERE route_id = 1; 4、SDO_LRS.DYNAMIC_SEGMENT 语法: SDO_LRS.DYNAMIC_SEGMENT( geom_segment IN SDO_GEOMETRY, start_measure IN NUMBER, end_measure IN NUMBER, tolerance IN NUMBER DEFAULT 1.0e-8 ) RETURN SDO_GEOMETRY; or SDO_LRS.DYNAMIC_SEGMENT( geom_segment IN SDO_GEOMETRY, dim_array IN SDO_DIM_ARRAY, start_measure IN NUMBER, end_measure IN NUMBER ) RETURN SDO_GEOMETRY; 用法与SDO_LRS.CLIP_GEOM_SEGMENT一样 5、 SDO_LRS.CONCATENATE_GEOM_SEGMENTS 语法: SDO_LRS.CONCATENATE_GEOM_SEGMENTS( geom_segment_1 IN SDO_GEOMETRY, geom_segment_2 IN SDO_GEOMETRY, tolerance IN NUMBER DEFAULT 1.0e-8 ) RETURN SDO_GEOMETRY; or SDO_LRS.CONCATENATE_GEOM_SEGMENTS( geom_segment_1 IN SDO_GEOMETRY, dim_array_1 IN SDO_DIM_ARRAY, geom_segment_2 IN SDO_GEOMETRY, dim_array_2 IN SDO_DIM_ARRAY ) RETURN SDO_GEOMETRY; 功能:连接线串,例子见1 6、SDO_LRS.OFFSET_GEOM_SEGMENT 语法: SDO_LRS.OFFSET_GEOM_SEGMENT( geom_segment IN SDO_GEOMETRY, start_measure IN NUMBER, end_measure IN NUMBER, offset IN NUMBER, tolerance IN NUMBER DEFAULT 1.0e-8 [, unit IN VARCHAR2] ) RETURN SDO_GEOMETRY; or SDO_LRS.OFFSET_GEOM_SEGMENT( geom_segment IN SDO_GEOMETRY, dim_array IN SDO_DIM_ARRAY, start_measure IN NUMBER, end_measure IN NUMBER, offset IN NUMBER [, unit IN VARCHAR2] ) RETURN SDO_GEOMETRY; 功能:指定的线段内进行偏移 例子: SELECT SDO_LRS.OFFSET_GEOM_SEGMENT(a.route_geometry, m.diminfo, 5, 10, 2) FROM lrs_routes a, user_sdo_geom_metadata m WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY' AND a.route_id = 1; 7、SDO_LRS.SPLIT_GEOM_SEGMENT(过程) 语法: SDO_LRS.SPLIT_GEOM_SEGMENT( geom_segment IN SDO_GEOMETRY, split_measure IN NUMBER, segment_1 OUT SDO_GEOMETRY, segment_2 OUT SDO_GEOMETRY); or SDO_LRS.SPLIT_GEOM_SEGMENT( geom_segment IN SDO_GEOMETRY, dim_array IN SDO_DIM_ARRAY, split_measure IN NUMBER, segment_1 OUT SDO_GEOMETRY, segment_2 OUT SDO_GEOMETRY); 功能:将一个几何体分为两个 例子见1 8、SDO_LRS.RESET_MEASURE(过程) 语法: SDO_LRS.RESET_MEASURE( geom_segment IN OUT SDO_GEOMETRY [, dim_array IN SDO_DIM_ARRAY]); 功能:将起始点到终止点的测量值都清空 例子: -- Reset geometric segment measures. DECLARE geom_segment SDO_GEOMETRY; BEGIN SELECT a.route_geometry into geom_segment FROM lrs_routes a WHERE a.route_name = 'Route1'; SDO_LRS.RESET_MEASURE (geom_segment); -- Update and insert geometries into table, to display later. UPDATE lrs_routes a SET a.route_geometry = geom_segment WHERE a.route_id = 1; END; 9、SDO_LRS.SET_PT_MEASURE 语法: SDO_LRS.SET_PT_MEASURE( geom_segment IN OUT SDO_GEOMETRY, point IN SDO_GEOMETRY, measure IN NUMBER) RETURN VARCHAR2; or SDO_LRS.SET_PT_MEASURE( geom_segment IN OUT SDO_GEOMETRY, dim_array IN SDO_DIM_ARRAY, point IN SDO_GEOMETRY, pt_dim_array IN SDO_DIM_ARRAY, measure IN NUMBER) RETURN VARCHAR2; or SDO_LRS.SET_PT_MEASURE( point IN OUT SDO_GEOMETRY, measure IN NUMBER) RETURN VARCHAR2; or SDO_LRS.SET_PT_MEASURE( point IN OUT SDO_GEOMETRY, dim_array IN SDO_DIM_ARRAY, measure IN NUMBER) RETURN VARCHAR2; 功能:将测量值设为一个特定的点 -- Set the measure value of point 8,10 to 20 (originally 22). DECLARE geom_segment SDO_GEOMETRY; dim_array SDO_DIM_ARRAY; result VARCHAR2(32); BEGIN SELECT a.route_geometry into geom_segment FROM lrs_routes a WHERE a.route_name = 'Route1'; SELECT m.diminfo into dim_array from user_sdo_geom_metadata m WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'; -- Set the measure value of point 8,10 to 20 (originally 22). result := SDO_LRS.SET_PT_MEASURE (geom_segment, SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(8, 10, 22)), 20); -- Display the result. DBMS_OUTPUT.PUT_LINE('Returned value = ' || result); END; 10、SDO_LRS.REVERSE_MEASURE 11、SDO_LRS.TRANSLATE_MEASURE 12、SDO_LRS.REVERSE_GEOMETRY Subprograms for Querying and Validating Geometric Segments 13、SDO_LRS.VALID_GEOM_SEGMENT 14、SDO_LRS.VALID_LRS_PT 15、SDO_LRS.VALID_MEASURE 16、SDO_LRS.CONNECTED_GEOM_SEGMENTS 17、SDO_LRS.GEOM_SEGMENT_LENGTH 18、SDO_LRS.GEOM_SEGMENT_START_PT 19、SDO_LRS.GEOM_SEGMENT_END_PT 20、SDO_LRS.GEOM_SEGMENT_START_MEASURE 21、SDO_LRS.GEOM_SEGMENT_END_MEASURE 22、SDO_LRS.GET_MEASURE 23、SDO_LRS.GET_NEXT_SHAPE_PT 24、SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE 25、SDO_LRS.GET_PREV_SHAPE_PT 26、SDO_LRS.GET_PREV_SHAPE_PT_MEASURE 27、SDO_LRS.IS_GEOM_SEGMENT_DEFINED 28、SDO_LRS.IS_MEASURE_DECREASING 29、SDO_LRS.IS_MEASURE_INCREASING 30、SDO_LRS.IS_SHAPE_PT_MEASURE 31、SDO_LRS.MEASURE_RANGE 32、SDO_LRS.MEASURE_TO_PERCENTAGE 33、SDO_LRS.PERCENTAGE_TO_MEASURE 34、SDO_LRS.LOCATE_PT 35、SDO_LRS.PROJECT_PT 36、SDO_LRS.FIND_LRS_DIM_POS 37、SDO_LRS.FIND_MEASURE 38、SDO_LRS.FIND_OFFSET 39、SDO_LRS.VALIDATE_LRS_GEOMETRY Subprograms for Converting Geometric Segments 40、SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY 41、SDO_LRS.CONVERT_TO_LRS_GEOM 42、SDO_LRS.CONVERT_TO_LRS_LAYER 43、SDO_LRS.CONVERT_TO_STD_DIM_ARRAY 44、SDO_LRS.CONVERT_TO_STD_GEOM 45、SDO_LRS.CONVERT_TO_STD_LAYER 四、SDO_MIGRATE包 SDO_MIGRATE.TO_CURRENT Format (Any Object-Relational Model Implementation to Current) SDO_MIGRATE.TO_CURRENT( tabname IN VARCHAR2 [, column_name IN VARCHAR2]); or SDO_MIGRATE.TO_CURRENT( tabname IN VARCHAR2, column_name IN VARCHAR2 [, commit_int IN NUMBER]); Format (Single Object-Relational Model Geometry to Current) SDO_MIGRATE.TO_CURRENT( geom IN SDO_GEOMETRY, dim IN SDO_DIM_ARRAY ) RETURN SDO_GEOMETRY; Format (Any Relational Model Implementation to Current) SDO_MIGRATE.TO_CURRENT( layer IN VARCHAR2, newtabname IN VARCHAR2, gidcolumn IN VARCHAR2, geocolname IN VARCHAR2, layer_gtype IN VARCHAR2, updateflag IN VARCHAR2); EXECUTE SDO_MIGRATE.TO_CURRENT('ROADS');